

Heavy Ion Laboratory, University of Warsaw an overview

Krzysztof Rusek

Heavy Ion Laboratory, University of Warsaw :

- National nuclear physics laboratory open for external users
- Recognized in Europe
- Involved in teaching
- developing medical applications

Radioactivity

M. Pfützner et al.

First Nuclear Physics Lab in Poland Hoża 69, prof. A. Sołtan (1937)

deuterons 0.4 MeV, I up to 200 μ A

NuPECC LRP2010 Town Meeting Madrid, 31/5/10

Nuclear facilities in **Europe**: JYFL

CK.

667-

PN

NuPECC Long Range Plan

Nuclear Facilities in Poland

Cyclotron Centre Bronowice

What is foreseen in NCRH – CCB?

11 May 2012

A REAL PROPERTY

12.2.2

76a 160

Frotes The

ELBRUS at Szczecin Univ.

Science Campus Ochota

First oncological hospital in Poland 29.05.1932

Heavy Ion Laboratory UW -

a national lab.

Staff

Scientists – 13 PhD students – 7 Technicians – 35 Administration - 8

Energies 2 ÷10 MeV/A

Cyclotron U-200 and ion sources

EAGLE γ - spectrometer

 up to 30 HP Ge detectors coupled to:

- Internal conversion electron spectrometer
- Scattering chamber with charged particles detectors

Electromagnetic properties of nuclei

(dr P. Napiorkowski, dr J. Srebrny...)

GOSIA Code

- Standard tool for Coulomb excitation data analysis
- Used worldwide, maintained and developed at HIL
- GOSIA Workshop organised at HIL in April 2008

ISOLDE (MINIBALL), CERN:

J. Cederkäll, A. Ekström – ^{108,110}Sn, ¹⁰⁸In J. Iwanicki - ⁸⁸Kr, ⁹²Kr A. Hurst - ⁷⁰Se I. Stefanescu – ⁶⁸Cu, ⁷⁰Cu J. Van de Walle – ⁷⁴Zn E. Clément – ⁹⁶Sr A. Petts, N. Bree - ^{182,184,186,188}Hg

GANIL (EXOGAM), FRANCE:

E. Bouchez – ⁷⁶Kr E. Clément – ^{74, 76}Kr M. Zielińska – ⁴⁴Ar

JAEA, TOKAI, JAPAN:

M. Koizumi - 66Zn, 68Zn T. Hayakawa – 78Se A. Osa - 84Kr Y. Toh – 70Ge M. Zielińska – 96,98Mo JYVASKYLA, FINLAND F. Becker – ⁷⁸Kr M. Hackstein – ¹²⁸Xe

ANL (Gammasphere), USA A.Hayes – ¹⁷⁸Hf

HIL Warsaw, Poland J. Iwanicki– 165Ho M. Zielińska – 96,98 Mo K. Wrzosek-Lipska - 100Mo

Upcoming experiments – GOSIA used for simulations

ISOLDE (MINIBALL), CERN: B. Bastin – 198,202Po M.Scheck – 220,222Rn, 222,224Ra

HIL WARSAW, POLAND M.Scheck – ⁹⁴Zr (Mar 2010) M. Zielińska – ¹⁰⁴Pd (May 2010)

Deformation of ¹⁰⁰Mo g.s. and 0+ exc. state

Theory:

L. Próchniak

Int. J. Mod. Phys. E19 (2010) 705,

L. Próchniak, S. G. Rohoziński, J. Phys. G: Nucl. Part. 36 (2009) 123101

Symmetries and nuclear structure

(Dr J. Srebrny, dr E.Grodner...)

Studies of identical bands in A~130 nuclei

Results:

Solid curve – g.s. band

Dashed curve – side band

ICARE large scattering chamber

Structure dependence

92**Z**r

²⁰Ne

⁹⁰Zr

α -structure of light nuclei ¹⁶O = ¹²C + α

M.C. Morais, R. Lichtenthäler / Nuclear Physics A 857 (2011) 1-8

Table 2 Alpha spectroscopic factors for ${}^{16}O_{gs}$.

Work	Reaction	S_{α}	
This work	¹² C(¹⁶ O, ¹² C) ¹⁶ O	1.45-1.58	
Refs. [22,23]	${}^{12}C(^{6}Li, d){}^{16}O$	7.6-10	
Ref. [24]	${}^{12}C(^{7}Li, t){}^{16}O$	0.38	
Ref. [25]	${}^{12}C(^{6}Li, d){}^{16}O$	0.34	
Ref. [26]	$^{16}O \rightarrow \alpha + ^{12}C$	5.41	
Refs. [9,19]	¹² C(¹⁶ O, ¹² C) ¹⁶ O	1.0-2.0	

Experyments in HIL – A. Pakou et al. Uniwersytet Ioannina, Grecja N. Burtebayev, University of Almaty, Kazakhstan

Interaction of exotic nuclei

New "magic" numbers Nuclear halo Three body forces Clustering etc.

What about en effective optical potential??

Interaction of exotic nuclei

prof. Adam Rudchik, IBJ UAN Kiev

Probability: optical potential a + A

+ structure

+ opt. potential b + B

IGISOL – magnetic spectrometer

 Trans – lead nuclear isomers investigated by isotope separation on – line

J. Kurcewicz et al. Phys. Rev. C76(2007)054320

Survival of irradiated cells (dr z. Szeflinski...)

Detector laboratory

prof. A. Kordyasz

Diamond detectors

Target laboratory dr Anna Stolarz

Head of International Nuclear Target Development Society www.intds.org

polyimide (C²²H¹⁰N²O⁴)ⁿ

Perfect mechanical properties, high chemical resistance, low radiadion damage

Education

One-week workshop for undergrad. students

Środowiskowe Laboratorium Ciężkich Jonów, Uniwersytet Warszawski.

Warszawa, 20 - 25 April 2009 r.

- UAM w Poznaniu
- Uniwersytet Szczeciński
- UMK W Toruniu
- IPJ w Świerku
- Uniwersytet Łódzki

- Uniwersytet Śląski
- UMCS w Lublinie
- Politechnika Warszawska
- Uniwersytet Warszawski
- Uniwersytet Wrocławski Politechnika Gdańska

International Workshop on Acceleration and Applications International Student Workshop Heavy Ions

Partners:

- University of Warsaw, Poland
- University of Huelva, Spain
- University of Sofia, Bulgaria
- Akdeniz University, Antalya, Turkey

SOPIA UNIVERSITY "St. Kilment Ohridski"

Eniversidad

de Huelva

Participants 201

Participants

Positron-Emitting Tomography

- During 80 and 90s mostly a research tool
- Since 2000: standard technique in large hospital in EU/US for diagnosis of cancer

Isotopes

Nuclid	T _{1/2} (min)	E _{max} (MeV)	Range y (mm)	Target	Reaction
¹⁸ F	109,7	0,635	0,2	¹⁸ O water Ne gas	¹⁸ O(p,n) ¹⁸ F ²⁰ Ne(d, α) ¹⁸ F
¹¹ C	20,4	0,96	0,4	N ₂ - gas	¹⁴ N(p,α) ¹¹ C
¹³ N	9,96	1,72	0,8	¹⁶ O water	¹⁶ O(p,α) ¹³ N ¹² C(d,n) ¹³ N
¹⁵ O	2,07	1,19	0,5	N ₂ - gas	¹⁴ N(d,n) ¹⁵ O
⁶⁸ Ga	68,3	1,9	1,2		Generator (from ⁶⁸ Ge)

Radiopharmaceutical research and production centre

Opening ceremony, 15.05.2012

Therapy using α-emitters (prof. J. Jastrzębski, dr J. Choinski...)

- α 's strongly interact with matter
- Have short range do not kill healthy cells
- Perfect theraphy for small cancers

isotope production

chemistry

Gamma spectrum from α irradiated Bi target

Summary

Heavy Ion Laboratory, University of Warsaw :

- National nuclear physics laboratory open for external users
- Recognized in Europe
- Involved in teaching
- developing medical applications