Detekcja promieniowania elektromagnetycznego cząstek naładowanych i neutronów

Marcin Palacz

Środowiskowe Laboratorium Ciężkich Jonów UW

Warsztaty ŚLCJ, 21 kwietnia 2009 – slide 1 / 30

Rodzaje i źródła promieniowania

- Promieniowanie elektromagnetyczne: γ, Χ
- Elektrony: rozpad β , konwersja wewnętrzna, elektrony Auger, elektrony delta
- Ciężkie cząstki naładowane
 - Rozpad α : ${}^{A}_{Z}X \rightarrow {}^{A-Z}_{Z-2}Y + {}^{4}_{2}\alpha$
 - Spontaniczne rozszczepienie (fragmenty)
 - p, α , oraz cięższe jądra produkowane (rozpraszane) "na wiązce"
- Neutrony:
 - Spontaniczne rozszczepienie
 - ♦ Źródła (α, \mathbf{n}) np $\frac{4}{2}\alpha + \frac{9}{4}$ Be $\rightarrow^{12}_{6} C + \frac{1}{0} n$
 - Źródła (γ, n)
 - Produkty reakcji "na wiązce"

Zakres energii: eV do kilkudziesięciu MeV (1 eV= $1.6 \cdot 10^{-19}$ J)

Rodzaje promieniowania a detekcja

Detekcja — oddziaływanie promieniowania z materią.

Promieniowanie					
z ładunkiem elektrycznym		bez ładunku elektrycznego			
ciężkie cząstki naładowane	\leftarrow	neutrony			
$\sim 10^{-5} { m m}$		$\sim 10^{-1}{ m m}$			
elektrony	\leftarrow	Χίγ			
$\sim 10^{-3} { m m}$		$\sim~10^{-1}{ m m}$			

- Promieniowanie z ładunkiem ciągłe oddziaływanie z elektronami w materiale.
- Promieniowanie bez ładunku (najpierw) jednokrotne, "katastroficzne" oddziaływanie.

Odziaływanie ciężkich cząstek naładowanych

- Jednoczesne, ciągłe oddziaływanie w wieloma elektronami ośrodka, maksymalny jednokrotny transfer energii: $4Em_e/m$
- Produkcja elektronów δ
- Wzór Bethe (nierel.):

Odziaływanie elektronów

procesy coulombowskie oraz radiacyjne:

$$\frac{dE}{dx} = (\frac{dE}{dx})_c + (\frac{dE}{dx})_r$$

Oddziaływanie neutronów

- oddziaływanie z jądrami: elastyczne i nieelastyczne rozpraszanie, wychwyt
- produktami oddziaływania są ciężkie cząstki naładowane
- najbardziej efektywny absorber: H

Podstawowe własności detektora

W wyniku oddziaływania promieniowania z materiałem detektora generowany jest ładunek elektryczny (czas: ps to ns). Ładunek zebrany \Rightarrow sygnał elektryczny (czas: ns to ms).

Widmo energetyczne

Parametry:

- wydajność $\epsilon = N_{rej}/N$ (wewnętrzna, absolutna)
- energetyczna zdolność rozdzielcza (FWHM)

Widmo czasowe

- $P/T = N_{pik}/N_{total}$
- czasowa zdolność rodzielcza
- czas martwy

liniowość

Marcin Palacz

Rodzaje detektorów

Przykłady rodzajów detektorów:

- gazowe detektory jonizacyjne
- scyntylatory
- detektory półprzewodnikowe

Gazowe detektory jonizacyjne

Scyntylatory

Energia kinetyczna padającej cząstki zamieniana na światło (najlepiej: natychmiastowa fluorescencja).

- scyntylatory organiczne: związki CH wzbudzenia elektronów w molekułach stałe i ciekłe
- scyntylatory nieorganiczne:
 wzbudzenia elektronów w strukturze krystalicznej wysoka gęstość i Z mniej światła higroskopijne

Liniowość, szybka odpowiedź, kształt impulsu może zależeć od rodzaju cząstki. Współpracują z urządzeniem wzmacniającym światło i przekształcającym je na sygnał elektryczny (fotopowielacz, fotodioda).

Przykład: scynt. detektor cząstek naładowanych

Detektor półprzewodnikowy

- przejście cząstki powoduje wytworzenie par elektron-dziura
- mała energia potrzebna do wytworzenia jednej pary nośników
- materiały: Si, Ge
- rozdzielczość energetyczna $\sim 0.1\%$
- wysoka gęstość, małe rozmiary

Przykład: detektor α **i p — SiBall**

Marcin Palacz

jądro atomowe emituje sekwencje kwantów γ, odpowiadających różnicom energii pomiędzy poziomami energetycznymi jądra

jądro atomowe emituje sekwencje kwantów γ, odpowiadających różnicom energii pomiędzy poziomami energetycznymi jądra

kwanty te są obserwowane jednocześnie (w koincydencji)

Marcin Palacz

Warsztaty ŚLCJ, 21 kwietnia 2009 - slide 14 / 30

jądro atomowe emituje sekwencje kwantów γ, odpowiadających różnicom energii pomiędzy poziomami energetycznymi jądra

kwanty te są obserwowane *jednocześnie* (w koincydencji)

Tworzenie jądra w stanie wzbudzonym następuje np poprzez:

• reakcję fuzji-ewaporacji: ${}^{58}\text{Ni} + {}^{45}\text{Sc} \rightarrow {}^{103}\text{In}(\text{CN}) \rightarrow$ p3n + ${}^{99}\text{Cd}$

jądro atomowe emituje sekwencje kwantów γ, odpowiadających różnicom energii pomiędzy poziomami energetycznymi jądra

kwanty te są obserwowane jednocześnie (w koincydencji)

Tworzenie jądra w stanie wzbudzonym następuje np poprzez:

- reakcję fuzji-ewaporacji: ${}^{58}\text{Ni} + {}^{45}\text{Sc} \rightarrow {}^{103}\text{In}(\text{CN}) \rightarrow$ p3n + ${}^{99}\text{Cd}$
- rozpad radioaktywny: ${}^{137}Cs \rightarrow {}^{137}Ba^*$

Oddziaływanie kwantów γ **z materią**

efekt fotoelektryczny:

kwant γ oddziałuje ze związanym w atomie elektronem, przekazując mu całą swoją energię. Emitowany jest fotoelektron oraz kwant energia E_{γ} jest (zwykle) w całości zdeponowana w detektorze w punkcie oddziaływania

$$E_{e^-} = h\nu - E_b$$

 $\tau \sim const \times Z^n / E_{\gamma}^{3.5}$ n = 4, 5

Oddziaływanie kwantów γ **z materią**

efekt fotoelektryczny:

kwant γ oddziałuje ze związanym w atomie elektronem, przekazując mu całą swoją energię. Emitowany jest fotoelektron oraz kwant energia E_{γ} jest (zwykle) w całości zdeponowana w detektorze w punkcie oddziaływania

 $E_{e^-} = h\nu - E_b$

 $\tau \sim const \times Z^n / E_{\gamma}^{3.5}$ n = 4, 5

rozpraszanie Comptona:

 $E_{\gamma}' = \frac{E_{\gamma}}{1 + (1 - \cos(\theta)) - \frac{E_{\gamma}}{2}}$

Oddziaływanie kwantów γ **z materią**

efekt fotoelektryczny:

kwant γ oddziałuje ze związanym w atomie elektronem, przekazując mu całą swoją energię. Emitowany jest fotoelektron oraz kwant energia E_{γ} jest (zwykle) w całości zdeponowana w detektorze w punkcie oddziaływania

 $E_{e^-} = h\nu - E_b$

 $\tau \sim const \times Z^n / E_{\gamma}^{3.5}$ n = 4, 5

rozpraszanie Comptona:

 $E'_{\gamma} = \frac{E_{\gamma}}{1 + (1 - \cos(\theta)) - \frac{E_{\gamma}}{2}}$

 kreacja par e⁺e⁻ (E_γ > 1.02 MeV) spowolniony e⁺ anihiluje dając parę kwantów γ po 511 keV

Oddziaływanie kwantów 7— porównanie

Marcin Palacz

Oddziaływanie kwantów 7— porównanie

Przekrój czynny – współczynnik

proporcjonalności σ w równaniu:

$$dn = \sigma N dx$$

gdzie:

- dn liczba rozproszonych cząstek
- *dx* grubość tarczy
 - n liczba padających cząstek na jednostkę powierzchni tarczy w jednostkowym czasie
- *N* gestość centrów rozpraszania w tarczy

Widmo kwantów y w detektorze Ge

Widmo w detektorze Ge z osłoną antykompton.

Detektor Ge z osłoną antykomptonowską

Układy detektorów germanowych: OSIRIS

Układ detektorów germanowych: EAGLE

kwanty γ o znanych energiach (źródło promieniotwórcze) $\rightarrow E_{\gamma} = f(x)$ np. $E_{\gamma} = a_0 + a_1 * x$

kwanty γ o znanych energiach (źródło promieniotwórcze) $\rightarrow E_{\gamma} = f(x)$ np. $E_{\gamma} = a_0 + a_1 * x$

kwanty γ o znanych energiach (źródło promieniotwórcze) $\rightarrow E_{\gamma} = f(x)$ np. $E_{\gamma} = a_0 + a_1 * x$

Kalibracja energetyczna — dopasowanie

Marcin Palacz

Widma po kalibracji energetycznej

 ${}^{58}\text{Ni}(205\text{MeV}) + {}^{45}\text{Sc}$

trigger: 2n

Poprawka dopplerowska

Marcin Palacz

Intensywność pików

Marcin Palacz

Warsztaty ŚLCJ, 21 kwietnia 2009 – slide 27 / 30

I_{γ}		
względna		
intensywność		
(tablice)		
13620		
3590		
12750		
1070		
6190		
6920		
6490		
10000		
	I_{γ} względna intensywność (tablice) 13620 3590 12750 1070 6190 6920 6490 10000	I I względna I intensywność I (tablice) I 13620 3590 3590 12750 1070 6190 6920 6490 10000 I

E_{γ}	$ $ I_{γ}	N_{γ}	
(keV)	względna	liczba	
	intensywność	zliczeń	
	(tablice)	(widmo)	
121.8	13620	4607	
244.7	3590	1077	
344.3	12750	3081	
411.1	1070	227	
778.9	6190	1003	
964.1	6920	995	
1112.1	6490	859	
1408.0	10000	1022	

E_{γ}	I_{γ}	N_γ	$\epsilon = N_{\gamma}/I_{\gamma}$
(keV)	względna	liczba	wydajność
	intensywność	zliczeń	
	(tablice)	(widmo)	
121.8	13620	4607	0.34
244.7	3590	1077	0.30
344.3	12750	3081	0.24
411.1	1070	227	0.21
778.9	6190	1003	0.16
964.1	6920	995	0.14
1112.1	6490	859	0.13
1408.0	10000	1022	0.10

E_{γ}	I_{γ}	N_γ	$\epsilon = N_{\gamma}/I_{\gamma}$
(keV)	względna	liczba	wydajność
	intensywność	zliczeń	
	(tablice)	(widmo)	
121.8	13620	4607	0.34
244.7	3590	1077	0.30
344.3	12750	3081	0.24
411.1	1070	227	0.21
778.9	6190	1003	0.16
964.1	6920	995	0.14
1112.1	6490	859	0.13
1408.0	10000	1022	0.10

Jeżeli znana jest absolutna aktywność źródła ($A = A_o e^{-\lambda t}$), to możemy wyznaczyć absolutną wydajność detektora.

Krzywa kalibracji wydajnościowej

Krzywa kalibracji wydajnościowej

Poprawka na wydajność detektora:

$$I_{\gamma} = N_{\gamma} / \epsilon(E_{\gamma})$$

Podsumowanie

- Oddziaływanie z materią elektronów, ciężkich cząstek naładowanych, neutronów i kwantów γ (X)
- Parametry charakteryzujące detektor: wydajność, rodzielczość energetyczna i czasowa, liniowość, P/T, czas martwy
- Jonizacyjny detektor gazowy, scyntylator, detektor półprzewodnikowy
- Kalibracja energetyczna i wydajnościowa detektora

Literatura:

- Glenn F.Knoll, *Radiation detection and measurement*
- W.R.Leo, Techniques for Nuclear and Particle Physics Experiments