

Accelerator – a device that uses electromagnetic fields to propel charged particles

Major types of accelerators:

a) linear:

- van de Graaff accelerator : Lech (IBJ, Warsaw, Poland)

- Linac (CERN, Geneva, Switzerland)

a) circular:

- cyclotron: U200-P (HIL, Warsaw, Poland), K130 (JYFL, Jyväskylä, Finland), K800 (INFN LNS, Catania, Italy), U400 and U400M (JINR, Dubna, Russia)

- synchrotron: LHC (CERN, Geneva, Switzerland)

Electrostatic accelerator (van de Graaff)

Electrostatic accelerator (van de Graaff)

LINAC

LINAC

CYCLOTRON

Diagram of cyclotron operation from Lawrence's 1934 patent (Ernest Lawrence, 1931)

CYCLOTRON

SYNCHROTRON

SYNCHROTRON

ECR ion source

(Electron Cyclotron Resonance)

coils 2. hexapol
plasma chamber
coaxial line 5. tuner
RF injection 7. exit hole
Einzel lens 9. yoke

Our ion sources and injection line

Mirror inflector

Mirror inflector

Isochronous cyclotron

Isochronous cyclotron

Thomas force

Inside the liners are placed the dees, which are polarized with the high-freqency voltage (up to 70kV; 12-19 MHz). The liners are grounded. The ions are accelerated in the gap between the edge of the dee and the edge of the liner (4 times on each orbit).

000000000

LINERS

Extraction – stripper

Dependence of the charge state population after stripping on the ion mass number A

Dependence of the charge state population after stripping on the ion energy

Extraction – electrostatic deflector

Beam lines

All beam lines are equipped with certain elements, which help in efficient transport of accelerated ion beam.

- quadrupol magnets
- dipol magnets : analysing magnets and steerers
- Faraday cups
- luminescence screens

Quadrupol magnet

Quadrupol magnet

Dipol magnet - steerer

Dipol magnet - steerer

Beam diagnostic – Faraday cup

Beam diagnostic - "luminescence"

