MEASUREMENTS OF ACTIVITY IN BIOLOGICAL SAMPLES AND PREPARATION OF TARGETS FOR NUCLEAR PHYSICS

Gloria Gonzalez (University of Huelva) Maciej Wojcik (University of Warsaw)

MEASUREMENTS OF ACTIVITY IN BIOLOGICAL SAMPLES

PICTURES OF MUSHROOMS

Xerocomus quel

Boletus

Suillus gray

MATERIAL AND METHOD

ENERGY CALIBRATION

$E = C * ch^2 + B * ch + A$

A= -0.1 [keV] B= 0.2608 [keV/ch] C= 1E-007 [keV/ch²]

EFFICIENCY CALIBRATION

COMPARISON OF BACKGROUND INSIDE AND OUTSIDE SHIELDING

WHAT WE FOUND IN BACKGROUND?

THORIUM FAMILY

ACTINIUM FAMILY

RADIUM FAMILY

137- CESIUM PEAK FOR 4 KINDS OF MUSHROOMS

RESULTS

	Activity (Bq)	Weight (g)	Dose/weight (uSv/g)	Dose/weight error [%]	Kg for 5mSv
Xerocomus	21.12	8.05	0.034	2.0	147
Suillus	16.11	9.20	0.023	1.3	220
Boletus	36.85	10.75	0.045	2.0	112

CONCLUSION

EATING MUSHROOMS IS SAFE

Why are mushrooms keeping more radioactive than anothers biological samples? Norbadium A

PREPARATION OF TARGETS FOR NUCLEAR PHYSICS

GOAL

Preparation of targets To measure the thickness of the targets

How?

Rolling and evaporation
Measurement of alpha energy
loss

ROLLING

- Preparation of sandwich and insert aluminium foil into it
- Rolling to obtain a specified thickness
- Meaurement the thickness using an induction device

EVAPORATION

- To calculate the tooling factor
- To cover the microscope slide with betaine or another parting agent
- Quartz indicated the thickness of the evaporated material and rate of the process

 $T = \left(\frac{l}{r}\right)^2 \cdot 100 \cdot \frac{1}{\cos \alpha}$ y Substrate r

TARGETS

- To put the microscope slide inside the dish with water in order to separate the gold foil
- Fishing gold foils from the water on the frame
- Leaving the foils to dry

SETUP FOR ALPHA ENERGY MEASURMENT

Empty	Aluminium 1	Aluminium 2
Copper	Gold 1	Gold 2

CALIBRATION

U=A*ch+B

E=a*ch+b

THICKNESS DETERMINATION

Similar Energy loss = initial α energy $-\alpha$ energy after passing through material.

Thickness= energy loss / stopping power

RESULTS

	²⁴¹ Am		Allumir 1	Alluminium 1		nium	Gold 1	Gold 2	Copper
Energy [MeV]		5.48	4.67	4.674		5.079		5.451	5.325
Energy loss [Mev]			0.81	0.810 0.4)5	0.030	0.033	0.159
Thickness [ug/cm2]			142	1421		710		148	394
Thickness error [ug/cm2]			52	52			13	14	76
Stopping power	Allum	inium	Gold	Со	pper	lr mea	nduction asurement	AI 1	AI 2
keV/ (ug/cm2)	0.568		0.2252	0.4032		T [hickness ug/cm2]	1360	598.4- 652.8

THANK YOU FOR YOUR ATTENTION

