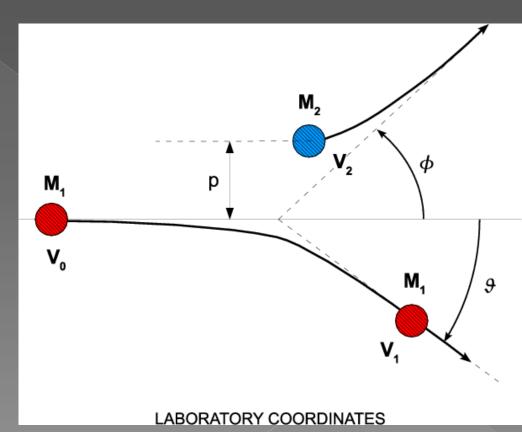


FUSION- EVAPORATION AND DIRECT REACTIONS IN THE INTERACTION OF ²⁰ Ne + ¹²C

STUDENTS:

EYÜP KAYA (Turkey) EDUARDO SUGRAÑES ANDIVIA (Spain) SIMEON AZAROV (Bulgaria) SUPERVISORS:

PROF. KIRBY KEMPER PROF.ISMAEL MARTEL MSC IZABELA STROJEK



Understand what happens when a 54,6MeV ²⁰Neon hits a ¹²Carbon nucleus.

- Fusion
- > Elastic Scattering
- > Direct Reactions

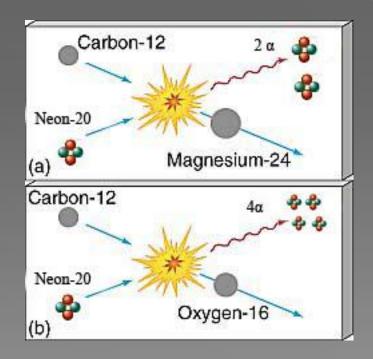
WHAT IS ELASTIC SCATTERING?

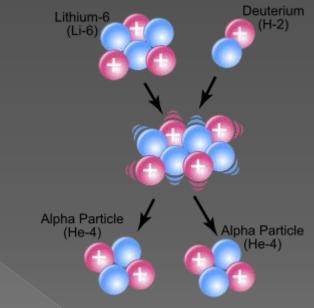
- There is no kinetic energy losses: $E_0 = E_1 + E_2$
- In scattering theory and in particular in nuclear physics and particle physics, elastic scattering is one of the specific forms of scattering. In this process, the kinetic energy of the incident particles is conserved in the center-of-mass frame, only their direction of propagation is modified.

WHAT IS FUSION?

In nuclear physics, **nuclear fusion** is a nuclear reaction in which two or more atomic nuclei collide at very high speed and join to form a new type of atomic nucleus. During this process, matter is not conserved because some of the mass of the fusing nuclei is converted to photons which are released through a cycle that even our sun uses. Fusion is the process that powers active stars.

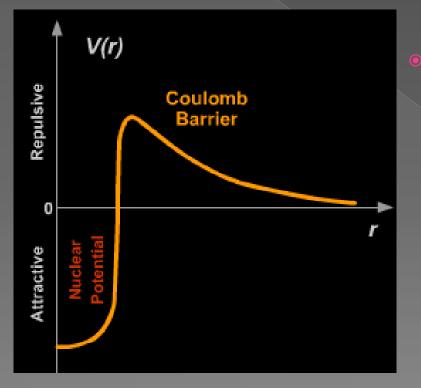
 In nuclear physics and chemistry, the Q value for a reaction is the amount of energy released by that reaction:


> Q= E (Reactants) – E (Products) Q= Initial mass – Final mass


 A reaction with a positive Q value is exothermic (has a net release of energy), while a reaction with a negative Q value is endothermic (requires a net energy input)

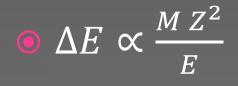
WHAT IS A DIRECT REACTION ?

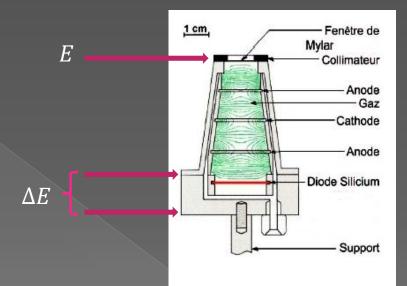
Transfer of particles between beam and target


- ²⁰ Ne+¹² C → ¹⁶ O+¹⁶ O
- 20 Ne+ 12 C \rightarrow 12 C + 20 Ne
- ²⁰ Ne+¹² C → ⁸ Be + ²⁴ Mg

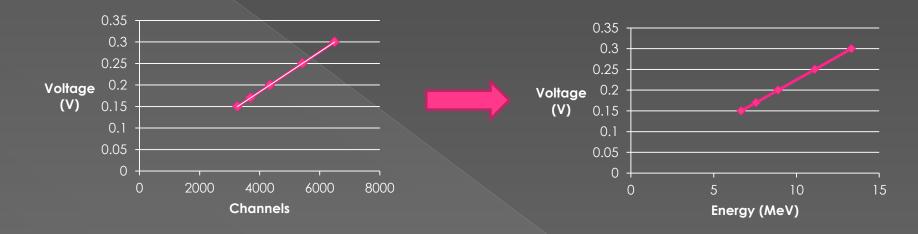
Lithium-6 – Deuterium Reaction

The Coulomb barrier, named after Coulomb's law, which is named after physicist Charles-Augustin de Coulomb (1736-1806), is the energy barrier due to electrostatic interaction that two nuclei need to overcome so they can get close enough to undergo a nuclear reaction.

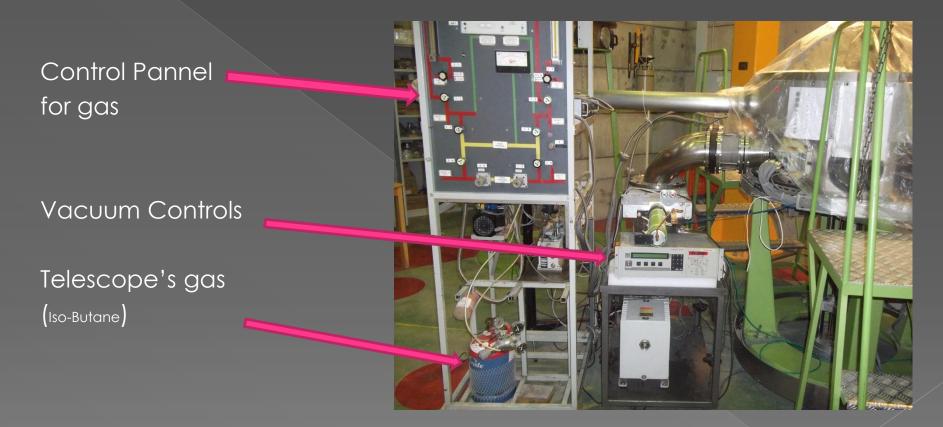

This energy barrier is given by the <u>electrostatic potential energy:</u>


$$U_{coul} = k \frac{q_1 q_2}{r} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

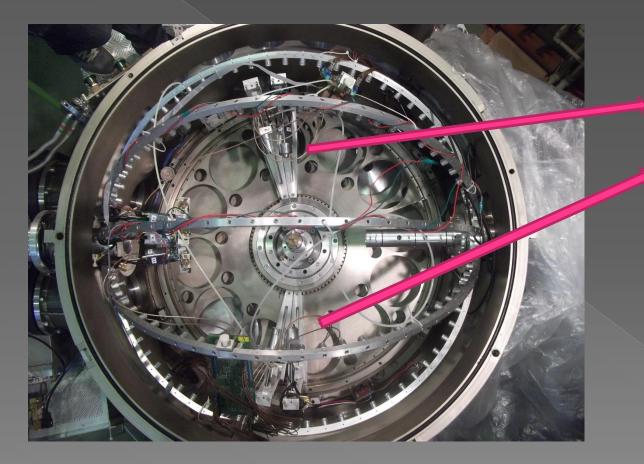
k is the Coulomb's constant =8.9876×109 N m² C-2; $\epsilon 0$ is the permittivity of free space q1, q2 are the charges of the interacting particles; r is the interaction radius.


TELESCOPES

Schematic view



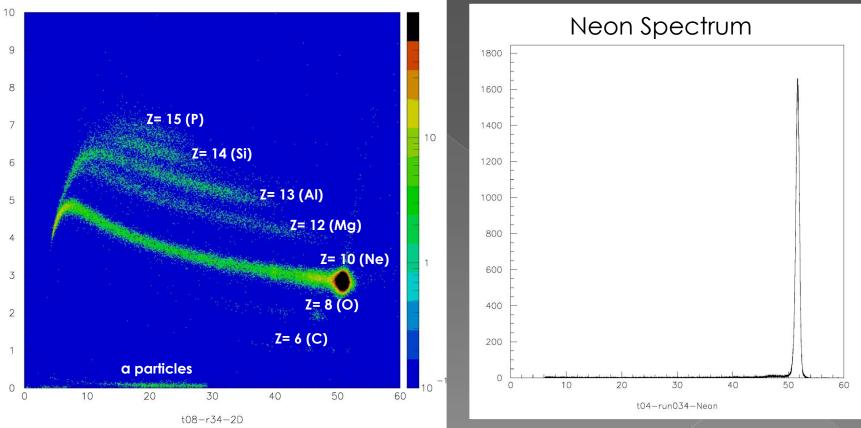
CALIBRATION

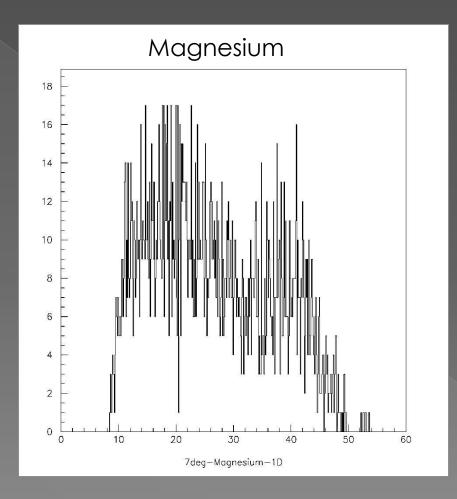


We used ²⁴¹Am as a source of alpha particles at 5,486 MeV. Some 166 keV was lost due to the window of the detector which is made of mylar putting the energy of our alphas at 5,32 MeV, which we used for the calibration.

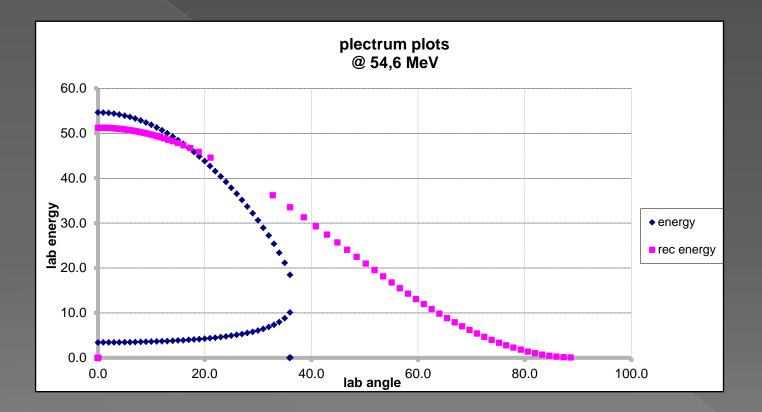
EXPERIMENTAL SETUP

EXPERIMENTAL SETUP




Gas-Si Telescopes

ANALYSIS


Full Spectrum

ANALYSIS STEPS

THEORETICAL KINEMATICS SIMULATIONS

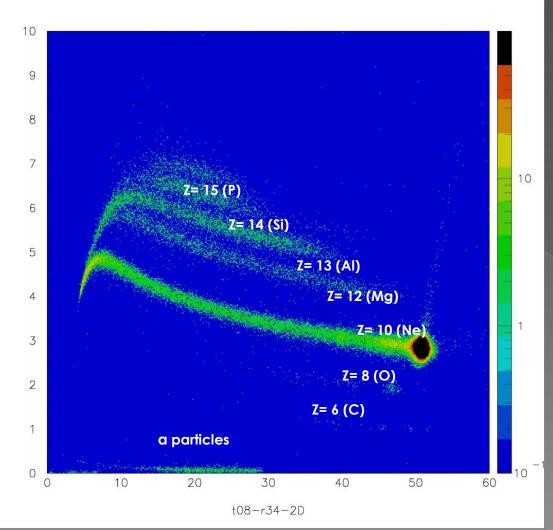
Elastic Scattering model of ²⁰Neon from ¹²Carbon (Catkin simulation)

COMPARING RESULTS

PACE4 simulation results

Experimental results

	Experimental Results for 7°							
	Particles	Counts	%					
	**Alphas	1127						
	**Carbon	42						
I	**Oxygen	183						
	Magnisium	2748	24,670%					
	Aluminum	5164	46,360%					
I	Silicon	2555	22,937%					
I	Phosphorus	672	6,033%					
	Total Counts	11139	100,000%					


Output results for compound nucleus decay -----

1.Yields of residual nuclei

Z	N	A		events	percent	x-section(mb)	
16	15	31	S	80	0.8%	6.7	
15	16	31	P	239	2.39%	20	
16	14	30	S	2	0.02%	0.167	
15	15	30	P	2485	24.9%	208	
14	16	30	Si	726	7.26%	60.8	
15	14	29	P	5	0.05%	0.419	
14	15	29	Si	894	8.94%	74.8	
13	16	29	AL	2	0.02%	0.167	
14	14	28	Si	511	5.11%	42.8	
14	13	27	Si	203	2.03%	17	
13	14	27	AL	4635	46.4%	388	
12	12	24	Mg	216	2.16%	18.1	
11	12	23	Na	2	0.02%	0.167	
TOTAL		10000	100%	837			

** Products obtained from direct reactions

Why is there no sodium?

Beam at ~20 MeV energy at CM

The Q-value of reactions involving Na are higher than 20 MeV

CONCLUSIONS

- We have observed fusion evaporation from ³² S to P, Si, Al, Mg
- Direct reactions O, C, Mg
- Fusion evaporation dominates the spectrum.
- Good match with catkin (kinematics) and PACE4 (fusion products) expected values.
- Phosphorus levels below expectations due to setup limitations.
- Lack of Sodium due to the high Q-value of the reaction needed to produce it.

