Gamma ray spectroscopy selected aspects and examples of focusing on in-beam experiments

Marcin Palacz Heavy Ion Laboratory, University of Warsaw

Gamma ray spectroscopy

- Wikipedia: "Gamma ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources..."
- In fact measurements of γ-ray properties like:
 - energy,
 - multiplicity,
 - coincidences,
 - times,
 - type (electric/magnetic) and multipolarity
 - perturbation in magnetic field
 - correlation with other reaction or decay products

In order to establish properties of excited nuclear states: excitation energy, spin, parity, half-life, magnetic moment, shape (deformation), rotation/oscillation,

Interactions of y rays in matter

Photo-electric effect

A γ -ray interacts with a bound atomic electron. A photoelectron is emitted, and it is stopped close to the interaction point – full energy deposit in the detector.

 $\sigma \sim Z^n / E_{\nu}^{3.5}$

$$E_e = E_y - E_b$$

Compton scattering

n = 4, 5

 e⁺e⁻ pairs production (E_γ > 1.02 MeV) slowed down e⁺ anihilates, giving a colinnear γ-ray pair, 511 keV each Marcin Palacz
 HIL Workshop, 28 February 2012

Gamma ray interactions - comparison

- Bad news: Compton scattering dominates for 100-5000 MeV, higher up – pair production.
- Good and bad news:

 In a large detector volume a γ-ray often interacts a few times.
 Each time a lower energy γ-ray is created, and finally the photo-effect becomes most probable.
 Probability that a scattered γ-ray escapes is anyway high.

Gamma ray spectrum E_v = 2.511 keV

Gamma ray spectrum E_y = 2.511 keV with anti-Compton shield

Germanium detector with anti-Compton shield

Advanced Gamma Ray Tracking Array

A Ge sphere, consisting of 180 x 36 = 3600 segments

Demonstrator

HIL Workshop, 28 February 2012

Gamma Ray Tracking Principle

Angle/energy correlation in Compton scattering is used to:

- select interactions (a few out of many) which are due to one γ-ray
- recover full γ-ray energy, and first (second) interaction point

Segmentation and pulse shape: x,y,z precision ~ 5 mm

Marcin Palacz

Marcin Palacz

HIL Workshop, 28 February 2012

10

beam

For example ${}^{58}Ni + {}^{45}Sc \rightarrow {}^{103}In \rightarrow 1p1\alpha 2n + {}^{96}Pd$

209 Ge detectors, 50 neutron detectors, charged particle detector effective data taking time: 310 hours Marcin Palacz HIL Workshop, 28 February 2012

Data processing 1

- Check and correction for instrumental shifts and instabilities
- Data scanned in 2h intervals: ~50000 Ge spectra

Data processing 2

Energy calibration: $E = a_0 + a_1^*x + \dots$

Data processing 3

Data processing 4,5,....

- Checks and corrections of data from ancillary detectors
- Optimizing gates on complementary detectors
- Time calibration
-

Data analysis

Aim: to determine properties of excited states

Individual nuclear states have unique spin and parity.

For decay from $(E_i J_i M_i \pi_i)$ to $(E_f J_f M_f \pi_f)$, the electromagnetic radiation must satisfy the following relations:

Properties of γ rays

Properties of states

Also: angular correlations of coincident γ rays, polarisation

Data analysis – half-lifes of excited states

Data analysis – short times

Marcin Palacz

HIL Workshop, 28 February 2012

drawings courtesy of M. Zielińska

Data analysis – even shorter times DSAM

life time range: ok. 10⁻¹¹– 10⁻¹⁴ s

Marcin Palacz

HIL Workshop, 28 February 2012

240

200

160-

120-

80-

40

23

drawings courtesy of M. Zielińska

OK, but do we really learn anything from [%]Pd itself?

- Comparison of the experimental and Shell Model states verifies SPE and interactions, in particular size of the N=50 gap.
- The negative parity isomeric state cannot be reproduced in this calculations

Summary

- Interactions of γ rays with matter: photo-effect, Compton, e+e⁻
- Compton suppressed Ge γ-ray spectrometers
- Gamma Ray Tracking Array AGATA
- Doppler effect
- Study of a nucleus in a fusion-evaporation reaction:
 - corrections and calibrations
 - energies of excited states
 - spin/parities
 - life times (including RDM, DSAM)
 - g-factor measurement
- ⁹⁶Pd, and the region of ¹⁰⁰Sn