Gamma ray spectroscopy selected aspects and examples of focusing on in-beam experiments

Marcin Palacz

Heavy Ion Laboratory, University of Warsaw

- Wikipedia: "Gamma ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources..."
- In fact measurements of γ-ray properties like:
- energy,
- multiplicity,
- coincidences,
- times,
- type (electric/magnetic) and multipolarity
- perturbation in magnetic field
- correlation with other reaction or decay products In order to establish properties of excited nuclear states: excitation energy, spin, parity, half-life, magnetic moment, shape (deformation), rotation/oscillation,
- Photo-electric effect

A γ-ray interacts with a bound atomic electron. A photoelectron is emitted, and it is stopped close to the interaction point full energy deposit in the detector.

$$
E_{e}=E_{\gamma}-E_{b} \quad \sigma \sim Z^{n} / E_{\gamma}^{3.5} \quad n=4,5
$$

- Compton scattering

$$
\begin{aligned}
& E_{\gamma}^{\prime}=\frac{E_{\gamma}}{1+(1-\cos (\theta)) \frac{E_{\gamma}}{m_{e} c^{2}}} \\
& \max E_{e}=E_{\gamma}\left(1-\frac{1}{1+\frac{2 E_{\gamma}}{511 k e V}}\right)
\end{aligned}
$$

- $\mathbf{e}^{+} \mathbf{e}^{-}$pairs production $\left(E_{\gamma}>1.02 \mathrm{MeV}\right)$ slowed down e^{+}anihilates, giving a colinnear γ-ray pair, 511 keV each
- Bad news:

Compton scattering dominates for 100-5000 MeV, higher up pair production.

- Good and bad news: In a large detector volume a Y ray often interacts a few times. Each time a lower energy y-ray is created, and finally the photo-effect becomes most probable.
Probability that a scattered Y-ray escapes is anyway high.

A Ge sphere, consisting of $180 \times 36=3600$ segments

Angle/energy correlation in Compton scattering is used to: - select interactions (a few out of many) which are due to one γ-ray

- recover full γ-ray energy, and first (second) interaction point

Segmentation and pulse shape: $\mathrm{x}, \mathrm{y}, \mathrm{z}$ precision $\sim 5 \mathrm{~mm}$

$$
E_{\gamma}{ }^{\prime}=E_{\gamma}\left(1+\frac{v}{c} \cos (\theta)\right)
$$

$$
{ }^{58} \mathrm{Ni}+{ }^{45} \mathrm{Sc} \rightarrow{ }^{103} \mathrm{In} \rightarrow 1 \mathrm{p} 1 \alpha 2 \mathrm{n}+{ }^{96} \mathrm{Pd}
$$

209 Ge detectors, 50 neutron detectors, charged particle detector effective data taking time: 310 hours

- Check and correction for instrumental shifts and instabilities
- Data scanned in $2 h$ intervals:
~50000 Ge spectra

Energy calibration: $E=a_{0}+a_{1}{ }^{*} x+$

Efficiency calibration

- Checks and corrections of data from ancillary detectors
- Optimizing gates on complementary detectors
- Time calibration

Aim: to determine properties of excited states

Individual nuclear states have unique spin and parity.
For decay from ($\left.E_{i} J_{i} M_{i} \pi_{i}\right)$ to $\left(E_{f} J_{f} M_{f} \pi_{f}\right)$, the electromagnetic radiation must satisfy the following relations:

Energy $\quad E_{\gamma}=E_{i}-E_{f}$
Multipolarity $\quad\left|J_{i}-J_{f}\right| \leq L \leq\left(J_{i}+J_{f}\right)$
M-state $\quad M=M_{i}-M_{f}$

Parity $\quad \pi=\pi_{i} \pi_{f}$

Properties of y rays
Properties of states

Method: analysis of coincident γ-ray spectra

Angular distributions

Also: angular correlations of coincident y rays, polarisation

$$
E_{\gamma}=E_{0}\left(1+\frac{v}{c} \cos \theta\right)
$$

time of flight: $\quad t_{D}=\frac{D}{v}$

$$
\begin{aligned}
& I_{s}=N_{0} \exp \left(-\frac{t_{D}}{\tau}\right)=N_{0} \exp \left(-\frac{D}{v \tau}\right) \\
& \frac{I_{o}}{I_{o}+I_{s}}=\exp \left(-\frac{D}{v \tau}\right) \quad N_{0}=I_{0}+I_{S}
\end{aligned}
$$

life time range: ok. $10^{-11}-10^{-14} \mathrm{~s}$

Larmor precession

$$
R(t)=\frac{I\left(t, 135^{\circ}\right)-I\left(t,-135^{\circ}\right)}{I\left(t, 135^{\circ}\right)+I\left(t,-135^{\circ}\right)}
$$

$$
\begin{array}{ll}
R(t) \sim \cos \left(2 \mathrm{t}\left(\theta-\omega_{L}\right)\right) \\
\omega_{L}=\mu_{n} g B / \hbar & \mathrm{g}=0.83(5)
\end{array}
$$

- SPE and interactions
- N=50, Z=50 gaps
- Interactions np
- rp-process

- Comparison of the experimental and Shell Model states verifies SPE and interactions, in particular size of the $\mathrm{N}=50$ gap.
- The negative parity isomeric state cannot be reproduced in this calculations
- Interactions of y rays with matter: photo-effect, Compton, $\mathrm{e}^{+} \mathrm{e}^{-}$
- Compton suppressed Ge γ-ray spectrometers
- Gamma Ray Tracking Array - AGATA
- Doppler effect
- Study of a nucleus in a fusion-evaporation reaction:
- corrections and calibrations
- energies of excited states
- spin/parities
- life times (including RDM, DSAM)
- g-factor measurement
- ${ }^{96} \mathrm{Pd}$, and the region of ${ }^{100} \mathrm{Sn}$

