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û(i) =
N

∑

j=1

〈ϕj|ˆ̄v(i, j)|ϕj〉
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Ex: octupole vibration in 208Pb
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Figure 2.2: (left) Time evolution of the octupole moment in 208Pb after an octupole

boost obtained with the tdhf3d code for both TDHF (solid line) and unperturbed

(dashed line) responses (see text). (right) Associated strength function.

Figure 2.3: (left) Time evolution of the mean square radius in 208Pb after a monopole

boost obtained with the tdhfbrad code (without pairing). (middle) Time evolution

of the oscillation amplitude (log scale). (right) Associated strength function. From

Ref. [Ave09].

that this state is clearly bound, as can be seen from the undamped nature of the

oscillation. This peak is associated to the low-lying 3− state in 208Pb. The energy

of this state is overestimated with the SLy4 parametrisation of the Skyrme EDF, as

the experimental value gives 2.6 MeV. However, its collective nature is unambiguous.

This can be seen from a comparison with the unperturbed response of the same

boost. The latter is obtained by freezing the mean-field in its initial HF value, i.e.,

neglecting the self-consistency of the mean-field in the dynamics. This procedure

removes the residual interaction which is responsible for the collectivity of vibrations

in TDHF (and RPA). We see that this peak disappears in the unperturbed spectrum,

proving its collective nature.

Another example is shown in Fig. 2.3. Here, a monopole boost is applied on the
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external excitation
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Giant resonances
«very» Collective: almost all nucleons participate 
to the vibration

high energy (typically 10 - 30 MeV)

some nucleons are promoted into the continuum

GR =    α + β + ...



Giant resonances
giant monopole resonance (breathing mode)
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Figure 2.2: (left) Time evolution of the octupole moment in 208Pb after an octupole

boost obtained with the tdhf3d code for both TDHF (solid line) and unperturbed

(dashed line) responses (see text). (right) Associated strength function.

Figure 2.3: (left) Time evolution of the mean square radius in 208Pb after a monopole

boost obtained with the tdhfbrad code (without pairing). (middle) Time evolution

of the oscillation amplitude (log scale). (right) Associated strength function. From

Ref. [Ave09].

that this state is clearly bound, as can be seen from the undamped nature of the

oscillation. This peak is associated to the low-lying 3− state in 208Pb. The energy

of this state is overestimated with the SLy4 parametrisation of the Skyrme EDF, as

the experimental value gives 2.6 MeV. However, its collective nature is unambiguous.

This can be seen from a comparison with the unperturbed response of the same

boost. The latter is obtained by freezing the mean-field in its initial HF value, i.e.,

neglecting the self-consistency of the mean-field in the dynamics. This procedure

removes the residual interaction which is responsible for the collectivity of vibrations

in TDHF (and RPA). We see that this peak disappears in the unperturbed spectrum,

proving its collective nature.

Another example is shown in Fig. 2.3. Here, a monopole boost is applied on the
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Giant resonances

Figure 2.5: Spectra of protons in the ”detector” (see text and Fig. 2.4) at different

times following an isovector monopole boost in 40Ca. (left) Each spectrum is shifted

vertically for clarity (time increases from bottom to top). The time delay between

two consecutive spectra is ∆T = 5 zs. (right) The proton spectra at different times

form an envelope (thick solid black line). The similar envelope obtained for neutron

is also shown with a dashed line.

We can see in Fig. 2.5 that both proton and neutron spectra exhibit some struc-

tures which cannot be explained by a simple hydrodynamical model. Instead, one

should seek for an explanation in terms of the microscopic structure of the GR.

This motivated a more detailed investigation which was part of B. Avez’s PhD

work [Ave09] and which is describe in detail in Ref. [3].

A brief summary of the result for the GMR in 16O is presented here (see Ref. [3]

for more details and for more results on tin isotopes). In this study, the tdhf-

brad code [4] is used with the SLy4 parametrisation of the Skyrme EDF without

pairing. Fig. 2.6 shows the time evolution (left) of the monopole moment after

a monopole boost, and the associated spectrum (right) obtained within the linear

response theory. The GMR spectrum exhibits structures which are associated to dif-

ferent single-particle orbitals. For instance, the high energy shoulder around 31 MeV

is due to s1/2 particle-hole excitations4.

The spectra of emitted protons and neutrons are shown in the left panel of

Fig. 2.7. The latter depend strongly on the associated single-particle quantum num-

bers. In particular, no s1/2 nucleons are emitted. This is due to the fact that the

1s1/2 hole state is deeply bound (-32.4 MeV for protons and -36.2 MeV for neutrons

according to the HF initial configuration [3]). In fact, the high energy shoulder of

the GMR spectrum (see Fig. 2.6-right) does not have enough energy to bring the

4The monopole excitations is associated to a ∆L = 0! angular momentum transfer so that

particle and hole have the same quantum numbers at the time of the excitation.
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