The time-dependent Hartree-Fock approach

$i\hbar \frac{d}{dt} |\varphi_i(t)\rangle = \hat{h}[\rho] |\varphi_i(t)\rangle \text{ for } i = 1, 2 \cdots N$

ex: vibrations induced by an external excitation

TDHF: practical aspects

TDHF calculations

Evolution operator $|\varphi_i(t)\rangle \neq \exp(-i\hat{h}t)|\varphi_i(0)\rangle$

because $\hat{h}[\rho(t)]$ is time dependent We assume $\hat{h} \equiv Cst$ between t and $t + \Delta t$

$$\left|\varphi_{i}(t+\Delta t)\right\rangle \approx \exp\left[-i\frac{\Delta t}{\hbar}\hat{h}(t+\frac{\Delta t}{2})\right] \left|\varphi_{i}(t)\right\rangle$$

TDHF: practical aspects

TDHF calculations

algorithm (order 2 Runge-Kutta)

Ex: octupole vibration in ²⁰⁸Pb

external excitation $\hat{V}_{ext}(t) = \varepsilon \hat{Q}_{30} \delta(t - t_0)$

«very» Collective: almost all nucleons participate to the vibration

high energy (typically 10 - 30 MeV)

some nucleons are promoted into the continuum

giant monopole resonance (breathing mode)

TDHF response to a monopole excitation

TDHF response to a monopole excitation

TDHF response to a monopole excitation

decay by nucleon emission

emitted nucleon detector (Fourier transform)

nucleus

decay by nucleon emission

nucleus

detector (Fourier transform)

decay by nucleon emission

nucleus

P(E)

detector (Fourier transform)

F

decay by nucleon emission

P(E)

nucleus

MAM

detector (Fourier transform)

F

Decay of a Giant resonance

(IVGMR in ⁴⁰Ca)

Decay of a Giant resonance

(IVGMR in ⁴⁰Ca)

Decay of a Giant resonance (IVGMR in ⁴⁰Ca) Coulomb barrier

