Gamma ray spectroscopy: a basic introduction

Magda Zielińska, CEA Saclay, France

Slides 2-13 courtesy of M. Palacz, HIL Warsaw

Gamma ray spectroscopy

Wikipedia: "Gamma ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources..."

In fact: measurement of γ-ray properties like:

- energy,
- multiplicity,
- coincidences,
- times,
- type (electric/magnetic) and multipolarity,
- perturbation in magnetic field,
- correlation with other reaction or decay products...
...in order to establish properties of excited nuclear states: excitation energy, spin, parity, half-life, magnetic moment, shape (deformation), rotation/oscillation, ...

Interaction of gamma-rays in matter

- Photo-electric effect

A γ-ray interacts with a bound atomic electron. A photoelectron is emitted, and it is stopped close to the interaction point full energy deposit in the detector.

$$
E_{e}=E_{\gamma}-E_{b} \quad \sigma \sim Z^{n} / E_{\gamma}^{3.5} \quad n=4,5
$$

- Compton scattering

$$
\begin{gathered}
E_{\gamma}^{\prime}=\frac{E_{\gamma}}{1+(1-\cos (\theta)) \frac{E_{\gamma}}{m_{e} c^{2}}} \\
\max E_{e}=E_{\gamma}\left(1-\frac{1}{1+\frac{2 E_{\gamma}}{511 k e V}}\right)
\end{gathered}
$$

- $\mathbf{e}^{+} e^{-}$pairs production $\left(E_{Y}>1.02 \mathrm{MeV}\right)$ slowed-down e^{+}annihilates, giving a co-linear γ-ray pair, 511 keV each

Gamma ray interactions - comparison

- Bad news: Compton scattering dominates for $100-5000 \mathrm{keV}$, higher up - pair production.
- Good and bad news: In a large detector volume a γ-ray often interacts a few times. Each $\frac{⿳_{冖}^{4}}{}$ time a lower energy γ-ray is created, and finally the photoeffect becomes most probable. Probability that a scattered γ-ray escapes is anyway high.

Gamma ray spectrum: $\quad E_{V}=2.511 \mathrm{keV}$

Gamma ray spectrum: $E_{\gamma}=2.511 \mathrm{keV}$

 with anti-Compton shield

Germanium detector with anti-Compton shield

Advanced Gamma Ray Tracking Array

A Ge sphere, consisting of $180 \times 36=3600$ segments

Demonstrator

Gamma Ray Tracking Principle

Angle/energy correlation in Compton scattering is used to:

- select interactions (a few out of many) which are due to one γ-ray
- recover full γ-ray energy, and first (second) interaction point

Segmentation and pulse shape: $\mathrm{x}, \mathrm{y}, \mathrm{z}$ precision $\sim 5 \mathrm{~mm}$

Doppler effect

Data analysis

Energy calibration: $E=a_{0}+a_{1}{ }^{*} x+$

Energy Calibration

Calibration Residua

Data analysis

Detector efficiency:

$$
\epsilon(E)=\frac{N(E)}{I(E)}=\frac{N(E)}{A * r(E) * t}
$$

$\mathrm{N}(\mathrm{E})$: number of registered counts $l(E)$: number of emitted gamma-rays
A: source activity (number of decays per unit time)
$r(E)$: probability of emission of a given gamma ray in a decay ($->$ Nuclear Data Tables)
t : time of measurement

Data analysis

Aim: to determine properties of excited states

Individual nuclear states have unique spin and parity.
For decay from ($E_{i} J_{i} M_{i} \pi_{i}$) to ($\left.E_{f} J_{f} M_{f} \Pi_{f}\right)$, the electromagnetic radiation must satisfy the following relations:

- Energy

$$
E_{\gamma}=E_{i}-E_{f}
$$

- Multipolarity

$$
\begin{aligned}
& \left|J_{i}-J_{f}\right| \quad L \quad\left(J_{i}+J_{f}\right) \\
& M=M_{i}-M_{f} \\
& \Pi=\Pi_{i} \Pi_{f}
\end{aligned}
$$

- M-state
- Parity

Properties of γ rays

Data analysis - energies of excited states

Method: analysis of coincident γ-ray spectra

GammaGamma

Data analysis - energies of excited states

Method: analysis of coincident γ-ray spectra

GammaGamma

Projection of the gamma-gamma coincidence matrix

Data analysis - energies of excited states

Method: analysis of coincident γ-ray spectra

Data analysis - spins Angular distributions

Also: angular correlations of coincident y rays

Data analysis - lifetimes of excited states

- Direct lifetime measurements
- Observation of activity decreasing with time (lifetimes longer than 10^{-9} s)

- Methods making use of the Doppler effect (lifetimes of $10^{-9}-10^{-14} \mathrm{~s}$)
- Recoil Distance Method (RDM)
- Doppler Shift Attenuation Method (DSAM)
- Coulomb excitation - measurement of transition probabilities (directly related to lifetimes)

Recoil Distance Method

Suitable for lifetmes of $10^{-9}-10^{-12} \mathrm{~s}$

$$
E_{\gamma}=E_{0}\left(1+\frac{v}{c} \cos \theta\right)
$$

Time of flight between foils (distance D)

$$
t_{D}=\frac{D}{v}
$$

Number of gammas emitted at rest

$$
I_{s}=N_{0} \exp \left(-\frac{t_{D}}{\tau}\right)=N_{0} \exp \left(-\frac{D}{v \tau}\right)
$$

Recoil Distance Method

For a shorter distance D:

Number of gammas emitted in flight:

$$
I_{o}=N_{o}-I_{s}=N_{0}\left(1-\exp \left(-\frac{D}{v \tau}\right)\right)
$$

Usually we analyse $R(D)$ defined as:

$$
R(D)=\frac{I_{o}}{I_{o}+I_{s}}=\exp \left(-\frac{D}{v \tau}\right)
$$

Recoil Distance Method

Example: ${ }^{74} \mathrm{Kr}, 4^{+}, 36^{\circ}$

Plunger

Doppler Shift Attenuation Method

Suitable for lifetimes of $10^{-11}-10^{-14} \mathrm{~s}$

Coulomb excitation

- Beam particle passing near a target nucleus generates a strong electromagnetic field
- It causes excitation of the target nucleus - population of higher-lying states
- Beam energy chosen in such a way that no collisions take place - the nuclei interact without touching each - only electromagnetic interaction possible (and this we know well!)
- Excitation cross-section proportional to reduced transition probability
\rightarrow we measure gamma-ray intensities and obtain transitions probabilities between excited states (directly related to their lifetimes)
- Observed excitation depends on scattering angle, beam energy, atomic numbers of collision partners.

Coulomb excitation

Data analysis - magnetic moments

Larmor precession

$$
R(t)=\frac{I\left(t, 135^{\circ}\right)-I\left(t,-135^{\circ}\right)}{I\left(t, 135^{\circ}\right)+I\left(t,-135^{\circ}\right)}
$$

B - external magnetic field

$$
\begin{array}{ll}
R(t) \sim \cos \left(2 \mathrm{t}\left(\theta-\omega_{L}\right)\right) \\
\omega_{L}=\mu_{n} g B / h & \mathbf{g}=\mathbf{0 . 8 3 (5)}
\end{array}
$$

