Basic facts about Coulex

• Due to the purely electromagnetic interaction the nucleus undergoes a transition from state $|i\rangle$ to $|f\rangle$.

• Then it decays to the lower state, emitting a γ -ray (or a conversion electron).

• The matrix elements $\langle f || M(E2) || i \rangle$ in the laboratory frame describe the excitation and decay pattern so they are connected with γ -ray intensities observed in the experiment.

Basic facts about Coulex experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a transition from state $|i\rangle$ to $|f\rangle$.

 \rightarrow Cline's "safe energy" criterion – if the distance between nuclear surfaces is greater than 5 fm, the nuclear interaction is negligible.

• Then it decays to the lower state, emitting a γ -ray (or a conversion electron).

• The matrix elements $\langle f || M(E2) || i \rangle$ in the laboratory frame describe the excitation and decay pattern so they are connected with γ -ray intensities observed in the experiment.

Basic facts about Coulex experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a transition from state $|i\rangle$ to $|f\rangle$.

 \rightarrow Cline's "safe energy" criterion – if the distance between nuclear surfaces is greater than 5 fm, the nuclear interaction is negligible.

- Then it decays to the lower state, emitting a γ -ray (or a conversion electron).
- \rightarrow gamma detectors needed
- The matrix elements $\langle f || M(E2) || i \rangle$ in the laboratory frame describe the excitation and decay pattern so they are connected with γ -ray intensities observed in the experiment.

Basic facts about Coulex experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a transition from state $|i\rangle$ to $|f\rangle$.

 \rightarrow Cline's "safe energy" criterion – if the distance between nuclear surfaces is greater than 5 fm, the nuclear interaction is negligible.

- Then it decays to the lower state, emitting a γ -ray (or a conversion electron).
- \rightarrow gamma detectors needed
- The matrix elements $\langle f || M(E2) || i \rangle$ in the laboratory frame describe the excitation and decay pattern so they are connected with γ -ray intensities observed in the experiment.
- \rightarrow to properly describe the excitation process particle detectors needed

Why do we like Coulomb excitation?

• it's a very precise tool to measure the collectivity of nuclear excitations and in particular nuclear shapes

- shape = fundamental property of a nucleus, "condensed" information about its structure
- excitation mechanism purely electromagnetic, the only nuclear properties involved: matrix elements of electromagnetic multipole operators
- nuclear structure information extracted in a model-independent way

Coulomb excitation method

• Cline's "safe energy" criterion: purely electromagnetic interaction if the distance between nuclear surfaces is greater than 5 fm

$$d = 1.25 \cdot (A_p^{1/3} + A_t^{1/3}) + 5.0 \quad \text{[fm]}$$

- The observed excitation depends on:
 - (Z, A) of the collision partners,
 - beam energy,
 - scattering angle.

"Safe" bombarding energy requirement

is a consequence of the D_{\min} requirement

Two possibilities to prepare an experiment:

- choose adequate beam energy (D > D_{min} for all θ) low-energy Coulomb excitation
- limit scattering angle, i.e. select impact parameter b (E_b , θ) > D_{min} high-energy Coulomb excitation

 Electromagnetic interaction well-known → one can easily calculate Coulomb excitation cross section for any states of the investigated nucleus when its internal structure is known (i.e. matrix elements of electromagnetic transitions)

 Straightforward method – quantum mechanical treatment: high number of partial waves, coupled channel equations... IMPRACTICAL !

 Simplified and replaced by a semiclassical approach without any significant loss of accuracy

Semiclassical picture of the Coulomb excitation

- Projectile is moving along the hyperbolic orbit and the nuclear excitation is caused by the time-dependent electromagnetic field from the projectile acting on the target nucleus
- Assumption: trajectories can be described by the classical equations of motion, electromagnetic interaction is described using the quantum mechanic.

- Validity of semiclassical approach:
 - **1.** $\lambda_{\text{projectile}} \ll D_{\text{min}}$ for a head on collision,
 - 2. small energy transfer,
 - 3. the excitation is induced only by the monopole-multipole interaction,
 - **4.** time seperation of the collision $(10^{-19} 10^{-20} \text{ s})$ and deexcitation (10^{-12} s) process.

Semiclassical picture of the Coulomb excitation

- Projectile is moving along the hyperbolic orbit and the nuclear excitation is caused by the time-dependent electromagnetic field from the projectile acting on the target nucleus
- Assumption: trajectories can be described by the classical equations of motion, electromagnetic interaction is described using the quantum mechanic.

- Validity of semiclassical approach:
 - **1.** $\lambda_{\text{projectile}} \ll D_{\text{min}}$ for a head on collision,
 - 2. small energy transfer,
 - 3. the excitation is induced only by the monopole-multipole interaction,
 - **4.** time seperation of the collision $(10^{-19} 10^{-20} \text{ s})$ and deexcitation (10^{-12} s) process.

Validity of classical Coulomb trajectories

- η » 1 required for a semiclassical treatment of equations of motion →hyperbolic trajectories
- condition well fulfilled in heavy-ion induced Coulomb excitation
- semiclassical treatment is expected to deviate from the exact calculation by terms of the order $\approx 1/\eta$

Coulomb excitation theory - the general approach

The excitation process can be described by the time-dependent H: $H = H_p + H_T + V (r(t))$

with $H_{P/T}$ being the free Hamiltonian of the projectile/target nucleus and V(t) being the time-dependent electromagnetic interaction (remark: often only target or projectile excitation are treated)

Denoting the P/T wave function by $\psi(t)$ the time-dependent Schrödinger equation: $i\hbar d\psi(t)/dt = [H_p + H_T + V(r(t))] \psi(t)$

During the collision, the wave function can be expressed as time-dependent expansion $\psi(t) = \sum_{n} a_{n}(t) \phi_{n}$ of the eigenstates ϕ_{n} of free $H_{P/T}$ what leads to a set of coupled equations for the **time-dependent excitation amplitudes** $a_{n}(t)$ $i\hbar \ da_{n}(t)/dt = \sum_{m} \langle \phi_{n} | V(t) | \phi_{m} \rangle \exp[i/\hbar (E_{n} - E_{m}) t] a_{m}(t)$ m - all states involved in theexcitation process $<math>\rightarrow$ nr. of coupled equations can be written as anexpansion of multipolesEnergies of initial and final states

Coulomb excitation theory - the general approach

The coupled equations for $a_n(t)$ are usually solved by a multipole expansion of the electromagnetic interaction V(r(t))

$$\begin{split} V_{P-T}(\mathbf{r}) &= Z_T Z_P \mathbf{e}^2 / \mathbf{r} \\ &+ \sum_{\lambda \mu} \mathbf{V}_P(\mathbf{E} \lambda, \mu) \\ &+ \sum_{\lambda \mu} \mathbf{V}_T(\mathbf{E} \lambda, \mu) \\ &+ \sum_{\lambda \mu} V_P(\mathbf{M} \lambda, \mu) \\ &+ \sum_{\lambda \mu} V_T(\mathbf{M} \lambda, \mu) \\ &+ O(\sigma \lambda, \sigma' \lambda' > 0) \end{split}$$

monopole-monopole (Rutherford) term electric multipole-monopole target excitation, electric multipole-monopole project. excitation, magnetic multipole project./target excitation (but small at low v/c) higher order multipole-multipole terms (small)

Coupled equations

iħ da_n(t)/dt = $\sum_{m} \langle \phi_n | V(t, TA, \mu) | \phi_m \rangle \exp[i/\hbar (E_n - E_m) t] a_m(t)$

In the heavy ion induced Coulomb excitation the interaction strength gives rise to multiple Coulomb excitation 3^{-} 1908 nuclear state can be populated indirectly, $844 \ 2^{+}$ 1463

via several intermediate states

The exact excitation pattern is not known The excitation probability of a given excited state might strongly dependent on many different matrix elements.

High number of coupled equations for the $da_n(t)/dt \rightarrow GOSIA$ code

Deexcitation process

 For a given set of matrix elements (Tλ,μ) GOSIA solves differential coupled equations for the time-dependent excitation amplitudes a_n(t)

iħ da_n(t)/dt = $\sum_{m} \langle \phi_n | \sum_{\lambda,\mu} V(t, T\lambda, \mu) | \phi_m \rangle e \times p[i/\hbar (E_n - E_m) t] a_m(t)$

to find level populations and gamma yields.

• The same set of $T_{\lambda,\mu}$ describes the deexcitation process

$$\mathsf{P}(\mathsf{T}\lambda; \mathbf{I}_{\mathsf{i}} \to \mathbf{I}_{\mathsf{f}}) = \frac{8\pi(\lambda+1)}{\lambda((2\lambda+1)!!)^{2}} \cdot \frac{1}{\hbar} \cdot \left(\frac{\mathsf{E}_{\gamma}}{\hbar c}\right)^{2\lambda+1} \cdot \mathsf{B}(\mathsf{T}\lambda; \mathbf{I}_{\mathsf{i}} \to \mathsf{I}_{\mathsf{f}})$$

$$E_{\gamma}$$
 I_{f}

Т

$$\mathsf{B}(\mathsf{T}\lambda; \mathbf{I}_{i} \rightarrow \mathbf{I}_{f}) = \frac{1}{2\mathbf{I}_{i}+1} \cdot \left\langle \mathbf{I}_{f} \left| \mathsf{M}(\mathsf{T}\lambda(\left| \mathbf{I}_{i} \right\rangle^{2} \right. \right.$$

Calculation includes effects influencing γ -ray intensities: internal conversion, size of Ge, γ -ray angular distribution, deorientation

Stable beam experiments

- usually multi-step excitation and complicated level schemes
- for deformed nuclei it may be useful to couple all matrix elements inside each rotational band
- beam intensities of the order of 10⁹pps: particle detectors at backward angles
- lifetime of several states known: no need for other kind of normalisation
- statistics enough for particle-gamma angular correlations

Exotic beam experiments

- usually one- or two-step excitation; level schemes not well known
- beam intensities rather low: particle detectors at forward angles to maximise the statistics
- normalisation to target excitation
- low statistics, sometimes only one gamma line observed
- relative normalisation of different ranges of scattering angles based on Rutherford scattering or target excitation

B(E2)'s in radioactive nuclei measured with Coulex

- usually only $2^+ \rightarrow 0^+$ transition visible
- normalisation to target excitation needed

2

• Coulex cross-section depends both on the $B(E2;2_1^+ \rightarrow 0^+)$ and the quadrupole moment!

Reorientation effect

• influence of the quadrupole moment of the excited state on its excitation cross-section

• dependence on scattering angle and beam energy

• BE CAREFUL – influence of double-step excitation of higher states may have the same effect!

Coulomb excitation and lifetime measurements

- results inconsistent with previously published lifetimes
- new RDM lifetime measurement: Köln Plunger & GASP
 ⁴⁰Ca (⁴⁰Ca,α2p) ⁷⁴Kr
 ⁴⁰Ca (⁴⁰Ca,4p) ⁷⁶Kr

- subdivision of data in several ranges of scattering angle
- spectroscopic data (lifetimes, branching and mixing ratios)
- least squares fit of \sim 30 matrix elements (transitional and diagonal)

Lifetime measurement

A. Görgen et al. EPJ A 26 153 (2005)

⁷⁴Kr, forward detectors (36°)gated from above

- new lifetimes in agreement with Coulex
- enhanced sensitivity for diagonal and intra-band transitional matrix elements

Results: shape coexistence in light Kr isotopes

First measurement of diagonal E2 matrix elements using Coulex of radioactive beam

E. Clément et al. Phys. Rev. C75, 054313 (2007)

Gamma-particle angular correlations

- feasible at several thousands of counts in a given gamma line
- determination of E2/M1 mixing ratios
- determination of spin of a decaying level
- distribution in phi usually more conclusive than in theta

