Beta Delayed Particle Emission

Ismael Martel
Department of Applied Physics University of Huelva
Huelva (Spain)

History:
$\rightarrow 1492$, the discovery of America: Shipbuilders, Caravels and the crew of Cristobal Columbus were from Huelva. Depart from a small port located at the village of Palos de la Frontera (Huelva).
$\rightarrow 1889$, first football team in Spain (soccer) founded by British workers at "Rio Tinto" mines (Rio Tinto Company, London, 1873).
\rightarrow 1960's, one of largest industrial sites in Spain (Chemicals, Petrol \& Mining industry)
\rightarrow 1992, University of Huelva was born, one of the youngest Universities of Spain. (15.000 students/ 150.000 habitants of Huelva)

Huelva

Recreativo Football Club 1889

Mniversidad deHuelva

1992
$\rightarrow 1999$, the Nuclear \& Particle Physics group (Estructura de la Materia)

The Nuclear Landscape

Introduction

Along history, there has been a constant effort to understard the structure and mechanism of the nature that surround us: 10^{10} Relative Abundance

- Why the Universe and the Nature have the structure observe?
- Which are the basic constituents of matter?
- How the different building blocks of matter interact which each other?
- Where, when and how the Universe has been originated?

"Creation pillars", nucleosynthesis of stars at Eagle's Nebulae

The research efforts carried out in basic nuclear physics (and Science in a wide sense) along last century (XX) has provided an un-precedent knowledge of the subatomic structure of matter and its constituents, its dynamics and the Origin of the Universe itself.

From a historical point of view, the major steps in the understanding of the Universe have taken place in particle accelerators.

At present Radioctive Beam Facilities we can customize our nuclear system (N, Z), "fabricate" any nucleus controlling the number of constituent protons and neutrons.

Proton Rich Nuclei $\leftarrow \rightarrow$ Neutron Rich Nuclei $\leftarrow \rightarrow$ Light unbound systems $\leftarrow \rightarrow$ Super-heavy's

Nuclear stability and radioactivity

Atomic nuclei are very "particular" systems \rightarrow only "magic" combinations of (Z, N) are possible \rightarrow stable nuclei \rightarrow nuclear interaction/ nuclear Structure
Far from "stable" configurations \rightarrow excess of energy \rightarrow
nucleons tends to reorganize \rightarrow particle emission
\rightarrow weak nuclear force $(p \leftarrow \rightarrow n)+$ strong + Coulomb \rightarrow radioactive decay or radioactivity.

Some common types of radioactivity

Beta decay

As it was previously discussed, weak interaction is one of the vehicles used for nuclear systems to release the excess of energy and travel from drip-lines to the Valley of Stability.

$$
\begin{array}{cl}
\beta-n \rightarrow p+e^{-+}+\quad & \beta^{+}: p \rightarrow n+e^{+}+v
\end{array} \begin{aligned}
& \text { Competing process: E.C. Electron Capture, } \\
& \text { E.C. }: p+e^{-} \rightarrow n+v
\end{aligned} \begin{aligned}
& \text { (Alvarez 1938) }
\end{aligned}
$$

The energy spectrum of beta particles is continuous: three body process

Neutrino
Pauli 193

- Beta
- Residual nucleus

Neutrino \rightarrow Reines \& Cowan 1950
K.S. Krane, Intr. Nucl. Phys., John wiley \& Sons, 1988

Beta decay and isospin

Beta decay: transformation of proton $\leftrightarrow \rightarrow$ neutron

Concept of nucleon: particle that can be proton/ neutron:
\rightarrow new quantum number ISOSPIN (T) describes "the charge state of the nucleon"

Dirac ket

$$
\bigcirc \rightarrow\left[\begin{array}{l}
0 \\
0
\end{array} \begin{array}{l}
T z=-1 / 2 \text { (neutron) }|-1 / 2\rangle \\
T z=+1 / 2 \text { (proton) } \quad|+1 / 2\rangle
\end{array}\right.
$$

Isospin modulus: $\mathrm{T}=1 / 2$

OPERATIONS \& OPERATORS

$|-1 / 2\rangle$ neutron $\quad|+1 / 2\rangle$ proton
$I=|-1 / 2\rangle\langle-1 / 2|+|+1 / 2\rangle\langle+1 / 2|$, identity
$\langle-1 / 2 \mid+1 / 2\rangle=\langle-1 / 2 \mid+1 / 2\rangle=0$, orthogonal
$\langle-1 / 2 \mid-1 / 2\rangle=\langle+1 / 2 \mid+1 / 2\rangle=1$, normalization
$T z=(-1 / 2)|-1 / 2\rangle\langle-1 / 2|+(+1 / 2)|+1 / 2\rangle\langle+1 / 2|$

nucleons

eigenvalues

$$
\begin{aligned}
& T z|+1 / 2\rangle=+1 / 2|T=+1 / 2\rangle \\
& T z|-1 / 2\rangle=-1 / 2|T=+1 / 2\rangle
\end{aligned}
$$

The isooospin operator
$T_{+}=|+1 / 2\rangle\langle-1 / 2| \quad$ Isospin flip $T+\mid-1 / \quad$ neutron \rightarrow proton $\left.\quad-1 / 2\right\rangle$
T - $=|-1 / 2\rangle\langle+1 / 2| \quad$ operators
$Q=(2 T z+1) / 2$ = charge operator
$\mathrm{M}\left(\mathrm{A}, \mathrm{T}, \mathrm{T}_{\mathrm{Z}}\right)=\mathrm{a}(\mathrm{A}, \mathrm{T})+\mathrm{b}(\mathrm{A}, \mathrm{T}) \mathrm{T}_{\mathrm{Z}}+\mathrm{c}(\mathrm{A}, \mathrm{T}) \mathrm{T}_{\mathrm{Z}}{ }^{2}$

The isobaric multiplet mass equation (IMME), Wigner 1957 \rightarrow drip lines, exotic radioactivity, etc

$$
\text { For a system nucleons } \quad T=\Sigma T(i) \quad T z=\Sigma T z(i) \quad T^{+/-}=\Sigma T^{+/-}(\mathrm{i}) \quad i=1 \ldots \text { A nucleons }
$$

Beta interaction

Experimentally, beta
$g_{v}=$ Fermi constant
$g_{A}=$ Gamow-Teller constant
decay can change spin of final nuclei (S operator)

Beta transition prob. \rightarrow Fermi Golden Rule
$\lambda(i, f ; E n, E b)=2 \pi / h|\langle i| V b| f\rangle\left.\right|^{2} \rho(Q-E n, E b)$ $\left.|M(G T)|^{2}=\left|\langle i| S T^{(+/-)}\right| f\right\rangle\left.\right|^{2}$

Transition probability
matrix element

Density of final states β, v recoil excit: En
$\rho(Q-E n, E b) \sim p_{b}(Q-E b)^{2} F(Z f, E b)$
$|i\rangle=|A ; i\rangle=$ initial nuclear state
$|A ; f\rangle=|A ; f\rangle x|\beta\rangle x|v\rangle$ final state

Allowed aproximation
Allowed decays $L=0 \quad(r=0)$

> Finally
> $\lambda(i, f ; E n)=\frac{m_{e}^{5} c^{4}}{2 \pi \hbar^{7}}\left[g_{V}^{2}|M(F)|^{2}+g_{A}^{2}|M(G T)|^{2}\right] f\left(Z_{f}, Q-E n\right)$
$f(Z, E)=\frac{1}{m_{e}^{5} c^{7}} \int_{0}^{p \max } F(Z f, p) p^{2}(E-E b) d p \quad$ Fermi integral

- Selection rules for allowed approx:

Fermi: $\quad \Delta \mathbf{T}=\mathbf{0} ; \Delta \mathbf{J}=\mathbf{0} ; \boldsymbol{\pi}_{\mathbf{f}}=\boldsymbol{\pi}_{\mathbf{i}} \rightarrow$ Isobaric analog state (IAS)
-. Gamow-Teller: $\Delta \mathrm{T}=\mathbf{0} \pm \mathbf{1} ; \Delta \mathrm{J}=\mathbf{0} \pm \mathbf{1} ; \boldsymbol{\pi}_{\mathrm{f}}=\boldsymbol{\pi}_{\mathrm{i}}$
Branching ratios and partial half-life $\left\{\begin{array}{l}\lambda_{T}=\lambda_{1}+\lambda_{2}+\ldots \lambda_{N} \\ T_{T}=\operatorname{Ln}(2) / \lambda \rightarrow 1 / T=1 / T_{1}+1 / T_{2} \ldots 1 / T_{N} \\ \operatorname{Br}(\mathrm{i})=\lambda_{i} / \lambda_{T}=T_{T} / T_{i}\end{array}\right.$

$$
\begin{aligned}
& f t \text {-value (comparative half-life) } \\
& \lambda=L n(2) / T_{1 / 2} \\
& f t=f * \frac{T_{1 / 2}}{B r}=\frac{\mathrm{K}}{g_{V}^{2}|M(F)|^{2}+g_{A}^{2}|M(G T)|^{2}} \\
& f t=\frac{\mathrm{C}}{\mathrm{~B}(\mathrm{~F})+\mathrm{B}(\mathrm{GT})}
\end{aligned}
$$

$B(F), B(G T)$: reduced transition probability

Large range $\mathrm{ft} \sim 10^{3} \rightarrow 10^{20} \rightarrow$ Tabulate $\log (\mathrm{ft})$

Beta delayed particle emission

Emission of particles from nuclear (excited) states populated by the beta decay
Two processes:

- Beta decay from the parent nucleus (precursor)
- Particle emission from excited states of "emitter" nucleus

E, Γ Level density Spin, Isospin β-decay properties
\rightarrow beta decay to excited levels of "emitter" nucleus; if the excited state is over separation energy $\mathrm{Sp} \rightarrow$ emission of particles
\rightarrow The half-life of beta decay is much longer than the nuclear level of emitter, the half-life of the process is given by the beta decay \rightarrow "beta - delayed"

Particle emission: transitions and decaying states

The wave functions obtained by solving the Schrödinger equation for time independent potentials have the property of being stationary states

$$
\hat{H} \Psi_{o}(r, t)=E(0) \Psi_{o}(r, t) \quad \Psi_{o}(r, t)=\Psi_{o}(r) e^{-i \frac{E(0)}{\hbar} t}
$$

States will remain in that energy eigenstate forever!
Under a sudden change of the potential (like beta decay $p \leftrightarrow \rightarrow n$), we get a new hamiltonian $H_{\text {new }}$ and the "old" wavefunctions are no more eigenvalues \rightarrow start evolution with time:

$$
\hat{U}(t) \Psi_{o}(r, t)=e^{-i \frac{\hat{H}_{\text {new }} t}{\hbar} t} \Psi_{o}(r, t)=\sum c_{i}(t) \phi_{i}(r) e^{-i \frac{E(i)_{\text {new }} t}{\hbar} t} \quad \begin{aligned}
& \text { Some of these new states are } \\
& \text { continuum states } \rightarrow \text { particle emission }
\end{aligned}
$$

$\hat{H}_{n e w} \phi_{i}(r, t)=E(i)_{\text {new }} \phi_{i}(r, t)$

The transition process (particle emission) can be described by the Fermi Golden Rule

$$
\begin{aligned}
\lambda & =\frac{2 \pi}{\hbar}\left|V_{i f}\right|^{2} \rho\left(E_{f}\right) \\
V_{i f} & =\int \Psi_{f}^{*}\left(H_{\text {new }}-H_{o l d}\right) \Psi_{i} \quad \rho\left(E_{f}\right)=\frac{d n_{f}}{d E_{f}}
\end{aligned}
$$

at of tionerivare

If $\mathrm{Ef}>\mathrm{Sp} \rightarrow$ tunnel through Coulomb barrier $\rightarrow P(r, t)$ decreases with time.
\rightarrow use of a complex energy eigenvalue in the final system:

$$
E_{d}+i \Gamma_{d} / 2
$$

$\phi_{d}(r, t)=N \phi_{d}(r) e^{-\frac{i}{\hbar}\left(E_{d}+i \Gamma_{d} / 2\right) t}=N \phi_{d}(r) e^{-\frac{i}{\hbar} E_{d} t} e^{\frac{1 \Gamma_{d}}{\hbar} t}$
$P(r, t)=N^{2}\left|\phi_{d}(r, t)\right|^{2}=N^{2}\left|\phi_{d}(r)\right|^{2} e^{-\frac{1}{\hbar} \Gamma_{d} t}$
$P(r, t)=N^{2}\left|\phi_{d}(r)\right|^{2} e^{-\lambda_{d} t} \quad \lambda=\frac{1}{\tau}=\frac{\Gamma}{\hbar}$

For the energy distribution (energy representation)

\rightarrow Fourier transform

$$
\begin{aligned}
& \phi_{d}(E) \approx \int e^{-\frac{i}{\hbar} E t} \phi_{d}(t) d t \approx \int e^{-\frac{i}{\hbar} E t} e^{-\frac{i}{\hbar} E_{d} t} e^{-\frac{1 \Gamma_{d}}{\hbar} t} d t \\
& \phi_{d}(E) \approx \frac{1}{\left(E-E_{d}\right)+i \frac{\Gamma}{2}} \quad P(E) \approx \frac{1}{\left(E-E_{d e c}\right)^{2}+\left(\frac{\Gamma}{2}\right)^{2}}
\end{aligned}
$$

Why complex eigenvalues? $\rightarrow E_{d}+i \Gamma_{d} / 2 \rightarrow$ naturally arise from solving Shrödinger ecuation at $E>0$! Georg Gamow: simple model of alpha decay, G.A. Gamow, Zs f. Phys. 51 (1928) 204; 52 (1928) 510
\rightarrow Quantum tuneling through barrier

$$
\begin{aligned}
& u^{\prime \prime}(r)=\left[\frac{l(l+1)}{r^{2}}+\frac{2 \mu}{\hbar^{2}} V(r)-k^{2}\right] u(r) \\
& u(r) \sim C_{0} r^{l+1}, r \rightarrow 0 \\
& u(r) \sim C_{+} H_{l, \eta}^{+}(k r), r \rightarrow+\infty \text { (bound,resonant) } \\
& u(r) \sim C_{+} H_{l, \eta}^{+}(k r)+C_{-} H_{l, \eta}^{-}(k r), r \rightarrow+\infty \text { (scattering) }
\end{aligned}
$$

If keep same boundary condition $\rightarrow \mathrm{H}^{+}(\mathrm{kr}), \mathrm{r} \rightarrow \infty$ Bound and resonant states \rightarrow poles of the Scattering matrix $\mathrm{S}(\mathrm{k})$ (matching with outgoing WF)

Bound states:

\rightarrow pure imaginary K values: $\sim-\mathrm{i} \mathrm{Ki}, \mathrm{Er}<0$

Resonant states:

\rightarrow complex K values: $\mathrm{Kr}-\mathrm{i} \mathrm{Ki}, \mathrm{Er}>0, \Gamma>0$
\rightarrow GAMOW STATES

$$
\hat{1}=\sum_{i=b}\left|u_{i}\right\rangle\left\langle\tilde{u}_{i}\right|+\sum_{j=r}\left|u_{j}\right\rangle\left\langle\tilde{u}_{j}\right|+\int_{L^{+}}|\varphi(k)\rangle d k\left\langle\tilde{\varphi}\left(k^{*}\right)\right|
$$

Figure 1: Gamow radial wave function $\varphi_{n l}(r)$

Consistent description of bound and scattering states: \rightarrow a rigged Hilbert space (Gel'fand triple space): 1960s Gel'fand combined Hilbert space with the theory of distributions.

Spectacular applications: Shell model in the continuum $/ / \rightarrow$ Shell model in the complex energy plane; N. Michel, W. Nazarewicz, M. Oloszajzak and T. Vertse (J. Phys. G.: Nucl. Part. Phys. 36 (2009) 013101
Difficult to overstimate the importance of Gamow theory!!.

Some references: Humblet and Rosenfeld, Nucl. Phys. 26, 529 (1961); T. Berggren, Nucl. Phys. A 109 (1968) 265. R. de la Madrid, Nucl. Phys. A812, 13 (2008)

Gamow states of a finite potential

R-MATRIX DESCRIPTION

Tradicional method \rightarrow based on R-matrix theory for unbound nuclei \rightarrow scattering, reactions, particle decay. (F. C. Barker, Aust. J. Phys., 1988, 41, 743-63, E.K. Warburton, PRC 33 (1986)303-313)
$P(E) \propto\left|\sum_{i} \frac{G(i)^{1 / 2} \Gamma(i)^{1 / 2}}{\left(E(i)+\Delta(i)-E-i \frac{\Gamma}{2}\right)}\right|^{2}$
$G(i)$: feeding factor of the decaying state
$\Gamma(i)$: level width $\Gamma(i): 2 P(E)^{\star} \gamma^{2}$
$\Delta(i)$: shift factor
(WF matching at pot. radius) Penetration
Reduced width (nuclear matrix element) $E(i)$: level energy/resonance
factor (barrier)

SUMMARY: what to expect for beta delayed particle emission

Two processes:

- Beta decay \rightarrow FERMI INTEGRAL (Matrix elements) $\rightarrow(Q-E n)^{5}$
- Particle emission \rightarrow BARRIER PENETRABILITY \sim P(Ek) $\sim 1 /(1+\exp ((E B-E k) / \omega b)$ (parabolic)
- Breit - Wigner shapes on each level
- Density of states above Sp

history \rightarrow observed since early stages of nuclear physics:
Beta delayed alphas ($\beta \alpha$): Rutherford (1916) [Philos. Mag. 31 (1916) 379]
\rightarrow "Long range alpha particles followed by beta decay of 212 Bi "
Beta delayed protons (β p): Marsden (1914) $\rightarrow{ }^{14} \mathrm{~N}(\alpha, \mathrm{p})^{17} \mathrm{O}$ [Philos. Mag. 37 (1919) 537]; Álvarez (1950) bombarded ${ }^{10} \mathrm{~B}$ and ${ }^{20} \mathrm{Ne}$ with 32 MeV protons \rightarrow beta delayed ${ }^{8} \mathrm{~B},{ }^{20} \mathrm{Na} \alpha$-emitters

The modern era begins in 1960's (β p, $\beta 2$ p)/ Zeldovich, Karnaukhov, Goldansky...
[Goldanskii NPA 19 (1960) 482]
\rightarrow Spectroscopic tool: Information about level energies, spins and parities of participant nuclei (precursor, emitter, daughter)

At present days investigations on beta delayed radioactivity are very intense, particularly with the use of radioactive beams:
typical decay mechanism at drip lines

- Large $Q b$ values \rightarrow access high energy states

Good alternative to gamma spectroscopy and nuclear reactions limited by beam intensities $\sim 10^{4} \mathrm{pps}$

- Beta delayed particle emission \rightarrow limited by selection rules of beta decay
- Usually first type of studies close to drip lines \rightarrow low isotope production \rightarrow largest yields obtained directly after ion source and implanted on decay foil.
- Relatively "simple" experimental setups.

TYPICAL EXPERIMENTAL SETUP

Low energy beam $(\sim 60 \mathrm{keV}) \rightarrow$ point like sources \rightarrow good angular resolution \rightarrow angular correlations

Beta delayed particle emitters

Example: The case of beta delayed particle emission from $31 \mathrm{Ar}(\mathrm{Z}=18, \mathrm{~N}=13)$

EXPERIMENTAL PROTON SPECTRUM

Fig. 4. The proposed level scheme and decay mechanism for ${ }^{31} \mathrm{Cl}$. Energy levels are given in MeV , relative to the ground state of ${ }^{31} \mathrm{Cl} .\left({ }^{*}\right)$ means ambiguous assignment; see text for details.

SUMMARY

We have revised the physics concepts behind the beta delayed particle emission process:

- Basic ides about the exotic decay process
- Exotic decays are an important source of spectroscopic information: level energies, spins, $B(F)$ and $B(G T)$ values, etc
- Technical aspects to measure these decay modes
- Status of beta delayed nucleon emission
- Basic ideas for beta decay and isospin
- Simple models for particle emission (Gamow states, R-Matrix,...)

THANKS FOR YOUR ATTENTION...

