Measurements of activity of biological samples Low-background γ ray spectroscopy.

Tomasz Kubiak

Alp Cesur

Alicia Ariza Velazquez

Tutor: dr Agnieszka Trzcińska

Measurement Instruments

- Germanium detector
- Gamma vision programme

germanium detector preamplifier

Shines and the second second

DSPEC * bias suppl. * amplifier *ADC

Measurement preparation

- Energy callibration:
- E = a(channel)+b
- Efficiency callibration:

The spectrum of cesium 137

Cs137_15min_graphic praktyki 1.0E06 1.0E05 10000 Counts 1000 100 10 1604.25 0.00 534.75 1069.50 2139.00 Energy (keV)

Energy callibration:

Comparison of background spectra from inside and outside of shield

counts/sec

Efficiency callibration and curve fitting

Mushrooms under investigation

king bolete

www.nagrzyby.pl

Xerocomus

forest complex "Bory Tucholskie"

Calculation of the activity of mushrooms samples

For cesium ¹³⁷Cs:

- Energy of main peak is: 661,660 keV
- It's intensity: 85,2%
- Efficiency: 0,006491

The spectrum of boletus from Bory Tucholskie

borowikBoryTucholskie_graphic

praktyki

Radioactivity of mushrooms

- Radiation dose permitted by law is 1mSv/year.
- Effective dose, derived from the nuclide of activity 1 Bq and absorbed by ingestion, for cesium-137 is 1,3·10⁻⁸ Sv.
- To receive a dose of 1 mSv we should eat nuclides with activity: 7,69 · 10⁴ Bq.

act/mass [Bq/g]	mass for 1 mSv [kg]
0,147	522,66
2,001	38,43
0,250	308,12
0,175	439,85
	act/mass [Bq/g] 0,147 2,001 0,250 0,175

Determination of ⁶⁰Co source activity

The spectrum of cobalt-60

name of isotope	activity [Bq]	activity [kBq]	
obalt 60 (1173,238keV)	91154,44	91,1544	Information for
(obalt 60 (1332,502 keV)	88088,85	88,0889	Tomasz Abraham
kobalt 60 (mean)	89621,64	89,6216	

Preparation of targets for nuclear physics and thickness measurement

Tomasz Kubiak

Alp Cesur

Alicia Ariza Velazquez

Tutors: dr Anna Stolarz, dr Agnieszka Trzcińska

Rolling

- Preparation of stainless steel protection sandwich.
- Insert material to it's interior and roll it in order to obtain a specified thickness.
- Measuring the thickness of the material using an induction device.

Evaporation

- Material was inside the boat or coil.
- It evaporated and condensed on the glass covered with sugar or soap (parting agents).
- Quartz indicated the thickness of the evaporated material and rate of the process.

Targets

- Releasing foils from the glass.
- Fishing foils from water using frames.
- Leaving the foils to dry

Thickness measurement

- Energy loss = initial α energy α energy after passing through material.
- Knowledge of the energy loss and stopping power for the particular material allows us to calculate the thickness:

$$th = \frac{\Delta E}{S(E)}$$

Stopping powers were calculated by SRIM code.

Mesurement setup

- Vacuum chamber
- ²⁴¹Am alfa source
- Table with targets
- Silicon detector
- Multichannel analyzer

Results

Target	Method of Preparation the Material	S(E)	Thickness (µm)			
			by α	Quartz Crystal Microbalance	induction	Rutherford
AI	Reference	154,6	4,813	-	4,8	-
AI	Rolling	154,6	2,596	-	2,5	-
AI	Evaporation	154,6	0,553	0,533	0,5	-
Cu	Evaporation (B)	361	0,456	0,2956	0,40 - 0,45	0,415
Mylar	Commercial	111,5	12,871	-	13	-
Ag	Rolling (B)	340,7	0,914	-	0,8 - 0,85	0,838
Cu	Rolling	361	2,292	-	2,5	-
Cu (detergen	Evaporation	361	0,253	0,2832	-	-
Cu (betaine)	Evaporation	361	0,321	0,2832	-	-

Thank you for your attention