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Figure 3.2: Nucleus-nucleus potentials obtained with the frozen approximation in

the 16O+208Pb system. Nuclear (dashed blue line) and Coulomb (dotted red line)

contributions, and their sum (solid line) have been obtained with the frozen code.

For comparison, the Wong potential [Won73] is shown in green dot-dashed line.

The latter is obtained with a potential depth V0 = 70 MeV, a potential diffuseness

a = 0.48 fm, and nuclear radii Ri = 1.25A1/3
i fm.

and the spatial derivatives. Nucleus-nucleus potentials are computed by translating

the nuclei in their HF state [29].

An example is shown in Fig. 3.2 for the 16O+208Pb system which could be con-

sidered as a benchmark in low energy reaction studies (see, e.g., Refs. [VGG+77,

TNLS89, MBD+99, DHDT+07, 11, 26]). A comparison with the Wong formula [Won73]

is shown. We see that, although the potential heights agree, differences appear at

short distances. In fact, inside the barrier, the parametrisations of nucleus-nucleus

potentials are less constrained by experimental data. In addition, the frozen ap-

proximation neglects the Pauli principle between the nucleons of different collision

partners, which may affect the inner barrier region.

The height of the barrier obtained with the frozen approximation5 is V frozen
B !

76.0 MeV. This value is close to the barrier obtained with the Wong formula [Won73],

V Wong
B ! 75.9 MeV, while it is 1 MeV smaller than the Bass barrier [Bas77], V Bass

B !
77.0 MeV. All these barriers overestimate the experimental value obtained from the

centroid of the barrier distribution (see Fig. 3.3) V exp.
B ∼ 74.5 MeV.

To investigate the possible role of dynamical effects on the fusion barrier, the

latter has been computed with the tdhf3d code. Because the TDHF theory does

5The same value has been obtained, independently, by Washiyama et al. [WL08].
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Fusion with TDHF
22 Chapter 2. Dynamical mean-field theories

Figure 2.2: Schematic representation of the 2 initial HF boxes which are positioned in a bigger box
for TDHF calculations.

energy (which fix the initial velocity v of the projectile at infinite distance) allow us to determine the
initial TDHF condition. At this initial time (t = 0), the two nuclei have a relative distance D0. In
general, a Rutherford trajectory is assumed to account for Coulomb trajectory from infinity to D0.
This hypothesis is consistent with the assumption that the two nuclei are in their ground state at t = 0,
i.e., we assume that no energy has been transfered from the relative motion to internal degrees of
freedom up to D0.

Using notations of section 2.4.3, a velocity vi is applied to each nucleus (i = 1 or 2) imposing
the impulsion Pi = Aimvi. This is performed by applying a translation to each ρi in momentum space
[Tho62]

ρ̂i(t = 0) = eimvi·r̂/! ρ̂i e−imvi·r̂/! (2.40)

where the position operator r̂ = x̂ex + ŷey + ẑez acts in single-particle space. Note that, here, ρ̂i is
reserved to the static HF state while ρ̂i(t = 0), with time in parenthesis, corresponds to the boosted
HF state.

In practice, since one usually follows directly single-particle wave-functions, the translation in
momentum space is directly applied to the waves

ϕsταn(r, t = 0) = eimv1·r/! ϕsταn(r) 1≤ n≤ A1
ϕsτβn(r, t = 0) = eimv2·r/! ϕsτβn(r) 1≤ n≤ A2. (2.41)

Once the two nuclei are positioned on the network and properly boosted, there is, a priori, no more
reason to distinguish single-particle states from one or the other collision partner.

Initial velocities v1,2 
from Rutherford traj.

Galielean boost exp(ikr) 
with k1,2=mv1,2/ħ 
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Figure 3.4: Relative distance between fragments as a function of time for head-on
16O+208Pb reactions computed with the tdhf3d code.

Figure 3.5: Top: Density evolution for the reaction 16O+208Pb corresponding to a

head-on collision at a center of mass energy Ec.m. = 74.44 MeV (just below the fusion

barrier). The red surfaces correspond to an iso-density half of the saturation density

(ρ0/2 = 0.08 fm−3). Each figure is separated by a time step of 135 fm/c. Bottom:

Same at Ec.m. = 74.45 MeV, i.e., just above the fusion threshold.
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Figure 3.4: Relative distance between fragments as a function of time for head-on
16O+208Pb reactions computed with the tdhf3d code.

Figure 3.5: Top: Density evolution for the reaction 16O+208Pb corresponding to a

head-on collision at a center of mass energy Ec.m. = 74.44 MeV (just below the fusion

barrier). The red surfaces correspond to an iso-density half of the saturation density

(ρ0/2 = 0.08 fm−3). Each figure is separated by a time step of 135 fm/c. Bottom:

Same at Ec.m. = 74.45 MeV, i.e., just above the fusion threshold.
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=> VB=74.45 MeV

(exp: VB=74.5 MeV)
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208Pb + 16O 74.44 MeV

<Z>~6.2
<N>~8.1

Average nucleon number in transfer reactions
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