

Warsaw, November 24, 2003

Atomic Physics

Atomic Physics at the New International Accelerator Facility at GSI in Darmstadt

Atomic Physics under Extreme Conditions

Andrzej Warczak

Jagiellonian University, Institute of Physics, Kraków, Poland

Warsaw, November 24, 2003

Atomic Physics

Extreme Static Fields

1s-ground state: increase of the electric field strength by six orders of magnitude

Warsaw, November 24, 2003

WARSA

Warsaw, November 24, 2003

Juelich-GSI-Świerk-Kraków-Kielce-Frankfurt

Towards an Accuracy of 1 eV

Development of x-ray detection techniques

Warsaw, November 24, 2003

Atomic Physics – Nuclear Physics

Giessen-GSI-Krakow

Warsaw, November 24, 2003

Extreme Velocities Extreme Dynamic Fields

Extreme Velocities

Lorentz Shifted (γ-boosted) Laser Cooling/ Spectroscopy

Warsaw, November 24, 2003

Extreme Velocities

Precision Measurements of 2s Lamb Shift in Strong Fields of High-Z Li-like lons

Lab.System (laser) $\hbar\omega_{I} = 5.87 eV$

 $\hbar\omega_0 = 280.6 eV$ fluorescence

excitation

γ=23.9

The large Doppler shift allows us to use visible laser sources to excite transitions in the energy range up to 280 eV, e.g. 2s-2p transitions in lithium-like heavy ions

Lab. System fluorescence $\hbar\omega_{_{Y}} = 13384 eV$

Extreme Dynamic Fields

Warsaw, November 24, 2003

Extreme Dynamic Fields

$$E \approx \frac{\gamma Z}{b^2}$$

Collision times in the sub-attosecond regime $(10^{-22} \text{ s} < t < 10^{-18} \text{s})$

Warsaw, November 24, 2003

Photon-Matter Interaction in the Relativistic Regime

Photon-Matter Interaction in the Relativistic Regime

zero degree emission: $(\alpha Z)^2$ correction to the magnetic emission

The HITRAP Project at GSI

down to 4 MeV/u

Antiproton Factory

Warsaw, November 24, 2003

Ultra-Slow and Trapped

Antiprotons

Hydrogen Antihydrogen **Positron** Antiproton **p**⁻ e⁺ Antimatter Mustalise こう

Ultra-Slow and Trapped

Antiprotons

What to Do with FLAIR

- Test of fundamental symmetries: CPT
- Exotic systems: "Atomcules"
- Interaction of matter with antimatter

Warsaw, November 24, 2003

Atomic Physics

Stored Particles Atomic Research Collaboration

Atomic Physics Group, GSI, Darmstadt, Germany University of Frankfurt, Germany Jagiellonian University, Kraków, Poland

Institute of Nuclear Physics, PAN, Kraków, Poland Kansas State University, Kansas, USA

Institute of Nuclear Studies, Świerk, Poland

Institute of Modern Physics, Lanzhou, China

Tbilisi State University, Tbilisi, Georgia Świętokrzyska Academy, Kielce, Poland

Fudan University, Shanghai, China, University of Giessen, Germany University of Tokyo, Japan LBNL, Berkeley, USA LLNL, Livermore, USA Lebedev Institute, Moscow, Russia University of Dresden, Germany MPI Heidelberg, Germany University of Heidelberg, Germany University of Mainz, Germany University of Stockholm, Sweden Warsaw University, Warsaw, Poland ANL, Argonne, USA HMI, Berlin, Germany University of St. Petersburg, Russia University of Kassel, Germany