Hot and Dense QCD Matter

K. Redlich

- **From LGT to heavy ion collisions**
- critical (freezeout conditions
 equation of state and particle excitation functions
- Towards chiral symmetry restoration
 - in-medium hadronic spectral functions
 - dilepton production rate
- Color superconductor on the lattice in NJL-model

QCD at non-vanishing chemical potential $\mu_q > 0$ Bielefeld-Swansea approach

$$Z(V,T,\mu) = \int DA \det M(\mu) e^{-S(V,T)} \Delta P = P(\mu) - P(0)$$

complex fermion determinant 1
Taylor expansion of $P(\mu/T)$:
 $\frac{P(T,\mu)}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$ o.6
 $\frac{n_q}{T^3} = \left(\frac{\partial}{\partial(\mu/T)}\frac{P}{T^4}\right)_{r \text{ fixed}}$, $\frac{\chi_q}{T^2} = \left(\frac{\partial^2}{\partial(\mu/T)^2}\frac{P}{T^4}\right)_{r \text{ fixed}}$ 0.4
From μ dependence of chiral susceptibilities $\frac{T_c(\mu)}{T_c(0)} \approx 1 - \alpha(m_q) \left(\frac{\mu}{T_c(0)}\right)^2$ $T/T_c^{\mu=0}$ 2

Chemical freezeout curve from heavy ion data

3

$$Z_{S} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi e^{-iS\phi} Tr[e^{-\beta(H-\mu_{B}B-\mu_{Q}Q-i\phi)}]$$

Only 2-parameters needed to fix all particle ratios

4

Taylor expansion of resonance pressure

Factorization of the baryonic pressure

baryon mass spectrum

$$\frac{P_B}{T^4} \approx F(T) \cosh(\frac{3\mu_q}{T})$$

$$F(T) = \frac{1}{2\pi^2} \int dm \rho(m) (\frac{m}{T})^2 K_2(\frac{m}{T})$$

Compare wich LGT results:

$$\frac{\Delta P}{T^4} \approx F(T) \left[\frac{c_2}{T} \left(\frac{\mu_q}{T} \right)^2 + \frac{c_4}{T} \left(\frac{\mu_q}{T} \right)^4 \right]$$
$$\frac{n_q}{T^3} \approx F(T) \left[\frac{2c_2}{T} \left(\frac{\mu_q}{T} \right) + \frac{4c_4}{T} \left(\frac{\mu_q}{T} \right)^3 \right]$$

 $\frac{\chi_q}{T^2} \approx F(T) \left| 2c_2 + 12c_4 \left(\frac{\mu_q}{T}\right)^2 \right|$

Consequences:

For fixed μ_q / T any ratio of these observables is T-independent

the ratio of the O(2) and O(4) coefficients: $\frac{C_4}{C_2} = \frac{3}{4}$

Hadron Mass Spectrum – LGT and Bag model results

LGT results for pion mass dependence of N, Δ and their parity partners

QCDSF Coll., M. Göckeler, et al..

Deconfinement is density driven - (percolation)

Phase boundary of fixed energy density versus chemical freezeout

Spliting of chemical freezeout and phase boundary surface appears when the densities of mesons and baryons are comparable ●For E<40 AGeV strong collective effects in hadronic medium are to be expected thus, **Dextrapolation of critical** condition of fixed \mathcal{E} calculated with free particle dispersion relation can be only a crude approximation

see also NJL results on critical conditions (T. Kunihiro et al.)

Chiral critical point in 3-flavour QCD F. Karsch et al.

Strong dependence of the position of second order endpoint on the quark mass!

Chiral Symmetry Restoration need in-medium spectral function

critical region very narrow

Vector meson spectral function effective Lagrangian approach

low M => significant contribution from couplings of: ρ to the $N^*(1520)N^{-1}$ and a_1 to the $N^*(1900)N^{-1}$ states

BCS in a degenerated quark matter

small T but large baryon-chemical potential

Dileptons from color-flavor locked CFL phase

Conclusions

Resonances are essential degrees of freedom near deconfinement is density driven

• eqs LGT \iff eqs heavy ion phenomenology

 Intermediate energy heavy ion collisions (1-40) AGeV (GSI future experiment) laboratory
 for collective effects and chiral symmetry restoration in high density and temperature baryonic medium

Color superconductivity could be accessible via dilepton yields – provided that the energy gap is > 100 MeV