

From Radiobiology to Radiation Therapy: Action of Heavy Charged Particles in Biological Material

Ewa Gudowska-Nowak^{1,2}

S.Brons, M. Durante, M. Heiss, M. Krämer, E. Nasonova, K. Psonka, S. Ritter, M.Scholz, G. Taucher-Scholz and G. Kraft

¹Institute of Physics, Jagellonian University, Krakow, Poland ²GSI, Biophysik, Darmstadt, Germany Nuclear Research Institute, Dubna, Russia University Federico II, Napoli, Italy

Challenges of biophysical research with heavy ions

- Mechanisms of biological damage induced by densely ionizing radiation: cellular response, signal transduction, genetic mutation
- Charged-particle cancer therapy
- Radiation protection in long-term space missions

***Bevelac (Berkeley), GSI (Darmstadt), HIMAC (Chiba), AGS-BNL (Brookhaven)

Radiobiological effects of highly charged ions

- High and low LET radiations act differently on DNA (differing degrees of spatial clustering of ionizations!)
- Number and size distribution of DNA fragments show a significant dependence on radiation quality
- The effect can be attributed to the random distribution of radiation tracks and deterministic localisation of energy within the track

Lesion clustering (multiple damage sites MDS) occurs at various levels of chromatin organization

B. Rydberg, Acta Oncol., 2001.

Krämer, Kraft, Radiat. Environ.
Biophys., (1994)
Cucinotta, Nikjoo,
Goodhead, Radiat.
Environ. Biophys.,
(1999)
Scholz, Kraft,
Radiat. Protec.
Dosim., (1994)
Holley, Chatterjee,
Radiat. Res., (1998)

p21 foci in human fibroblast nuclei traversed by Pb ions

X-rays: 10 Gy

B. Jakob et al., Radiat Res., 2000.

0 h

1.5 h

Intracellular DSB induction and rejoining along the track of carbon particle beams

Heilmann J. et al., Int J Radiat Oncol., 1996.

Chromosomal aberrations in blood lymphocytes

George et al., 2001

Normal

Simple reciprocal exchange involving chromosome 5 Complex exchanges involving chromosomes 1, 2, and 5

Counting statistics and distribution of fragment lengths from the LEM (Local Effect Model)

Conclusions

After high LET irradiation most DSBs is located in clusters corresponding to multiply damaged sites

Differences in the complexity of induced lesions can be traced back to the pattern of a local energy (dose) deposition

Conclusions

- Cosmic radiation is one of the main problems for long-term space missions, particularly for the exploration of Mars
- Necessity: to <u>reduce uncertainty</u> in risk estimates and to <u>develop</u> <u>contermeasures</u>

 These tasks can be accomplished (within 10-20 years) by extensive biological experiments at accelerators using p and heavy ions at 0.1<E<10 GeV/n

- •S. Ritter, E. Nasonova, E. Gudowska-Nowak M. Scholz and G. Kraft *Aberrations in V79 Cells Analyzed in First and Second Post-irradiation Metaphases*, Int. J. Radiat. Biol. 76 (2000) 149.
- .E. Gudowska-Nowak, S. Ritter, G. Taucher-Scholz, G. Kraft, Compound Poisson Processes and Clustered Damage of *Radiation Induced DNA Double Strand Breaks*, Acta Phys. Pol. 31 (2000) 1109.
- •.E. Nasonova, S. Ritter, E. Gudowska-Nowak, G. Kraft, *High-LET Induced Chromosomal Damage: Time Dependent Expression*, Physica Medica 17 (2001) 198.
- •.E. Gudowska-Nowak, A. Kleczkowski, G. Kraft, E. Nasonova, S. Ritter, M. Scholz, *Mathematical Models of Radiation Induced Mitotic Delay*, Physica Medica, 17 (2001) 161.
- •.E. Nasonova, E. Gudowska-Nowak, S. Ritter and G. Kraft, *Analysis of Ar Ion and X-ray Induced Chromatin Breakage* and Repair in V79 Cells, Int. J. Radiat. Biol. 77 (2001) 59.
- •. S. Ritter, E. Nasonova, E. Gudowska-Nowak and G. Kraft *Is high LET damage on chromosomes different from low LET damage?* Proceedings of the 3rd Wolfberg Meeting on Molecular Biology, Ermatingen, Schweiz, 1999
- •.S. Ritter, E. Nasonova, E. Gudowska-Nowak and G. *Kraft Mutation Expression in Chromosomes After Particle Irradiation* GSI Annual Reports, Darmstadt, Germany 1999.
- •.S. Ritter, S. Berger, T. Grősser, P. Hessel, G. Kraft, E. Nasonova, K. Ando, E. Gudowska-Nowak *Quantification of high LET induced chromosome damage*, GSI Annual Reports, Darmstadt, Germany 2000.
- •.S. Ritter, E. Nasonova and E. Gudowska-Nowak *Effect of LET on the yield and quality of chromosomal damage in metaphase cells: a time-course study*}, Int. J. Radiat. Biol. 78 (2002) 191.
- •.T. Grősser, P. Hessel, S. Ritter, E. Nasonova, E. Gudowska-Nowak, Use of human lymphocytes for radiation risk assessment, GSI Annual Reports, 2001.
- •.R. Lee, T. Grősser, P. Hessel, E. Nasonova, E.Gudowska-Nowak, S. Ritter, *Analysis of the cell cycle progression of unirradiated and irradiated human lymphocytes*, GSI Annual Reports, 2000.
- •.S. Brons, K. Psonka, M. Heiss, E. Gudowska-Nowak, G. Taucher-Scholz, *Direct visualisation of heavy ion-induced DNA fragmentation by use of the Atomic Force Microscopy*, Radiation Oncology, (2003) in press.

BioLab

Nanometer-scale Science Advanced Materials

NANOSAM UJ

Energy localisation: the Bragg peak

Ni ions 3.5 MeV/u, 4•10⁸ p/cm²

Induction of double strand breaks (DSB)

